import datetime import pandas as pd import hopsworks import os import datetime from xgboost import XGBRegressor import pandas as pd import hopsworks import os os.environ['HOPSWORKS_PROJECT'] = os.getenv('HOPSWORKS_PROJECT') os.environ['HOPSWORKS_API_KEY'] = os.getenv('HOPSWORKS_API_KEY') project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() retrieved_model = mr.get_model( name="air_quality_xgboost_model", version=1, ) saved_model_dir = retrieved_model.download() def get_merged_dataframe(): # Get data monitor_fg = fs.get_or_create_feature_group( name='aq_predictions', description='Air Quality prediction monitoring', version=1, primary_key=['city','street','date','days_before_forecast_day'], event_time="date" ) air_quality_fg = fs.get_feature_group( name='air_quality', version=1, ) weather_fg = fs.get_feature_group( name='weather', version=1, ) retrieved_xgboost_model = XGBRegressor() retrieved_xgboost_model.load_model(saved_model_dir + "/model.json") selected_features = air_quality_fg.select_all(['pm25', 'past_air_quality']).join(weather_fg.select(['temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']), on=['city']) selected_features = selected_features.read() selected_features['date'] = pd.to_datetime(selected_features['date'], utc=True).dt.tz_convert(None).astype('datetime64[ns]') selected_features = selected_features.tail(100) predicted_data = monitor_fg.read() predicted_data = predicted_data[['date','predicted_pm25']] predicted_data['date'] = predicted_data['date'].dt.tz_convert(None).astype('datetime64[ns]') predicted_data = predicted_data.sort_values(by=['date'], ascending=True).reset_index(drop=True) #get historical predicted pm25 selected_features['predicted_pm25'] = retrieved_xgboost_model.predict(selected_features[['past_air_quality','temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']]) #merge data selected_features = selected_features[['date', 'pm25', 'predicted_pm25']] combined_df = pd.merge(selected_features, predicted_data,on='date', how='outer') combined_df['date'] = pd.to_datetime(combined_df['date'], utc=True).dt.tz_convert(None).astype('datetime64[ns]') # Combine the predicted_pm25_x and predicted_pm25_y columns into one combined_df['predicted_pm25'] = combined_df['predicted_pm25_x'].combine_first(combined_df['predicted_pm25_y']) # Drop the individual columns after merging combined_df = combined_df.drop(columns=['predicted_pm25_x', 'predicted_pm25_y']) combined_df = combined_df.drop_duplicates(subset=['date']).reset_index(drop=True) return combined_df