import cv2 import base64 import requests import numpy as np META_PROMPT = ''' For any labels or markings on an image that you reference in your response, please enclose them in square brackets ([]) and list them explicitly. Do not use ranges; for example, instead of '1 - 4', list as '[1], [2], [3], [4]'. These labels could be numbers or letters and typically correspond to specific segments or parts of the image. ''' API_URL = "https://api.openai.com/v1/chat/completions" def encode_image_to_base64(image: np.ndarray) -> str: """ Encodes an image into a base64-encoded string in JPEG format. Parameters: image (np.ndarray): The image to be encoded. This should be a numpy array as typically used in OpenCV. Returns: str: A base64-encoded string representing the image in JPEG format. """ success, buffer = cv2.imencode('.jpg', image) if not success: raise ValueError("Could not encode image to JPEG format.") encoded_image = base64.b64encode(buffer).decode('utf-8') return encoded_image def compose_headers(api_key: str) -> dict: return { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } def compose_payload(image: np.ndarray, prompt: str) -> dict: base64_image = encode_image_to_base64(image) return { "model": "gpt-4-vision-preview", "messages": [ { "role": "system", "content": [ META_PROMPT ] }, { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ], "max_tokens": 800 } def prompt_image(api_key: str, image: np.ndarray, prompt: str) -> str: headers = compose_headers(api_key=api_key) payload = compose_payload(image=image, prompt=prompt) response = requests.post(url=API_URL, headers=headers, json=payload).json() if 'error' in response: raise ValueError(response['error']['message']) return response['choices'][0]['message']['content']