import os import gradio as gr import asyncio from langchain_core.prompts import PromptTemplate from langchain_community.document_loaders import PyPDFLoader import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load Mistral model model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" tokenizer = AutoTokenizer.from_pretrained(model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) async def initialize(file_path, question): prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) if os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context = "\n".join(str(page.page_content) for page in pages[:30]) # Prepare input for Mistral model input_text = prompt.format(context=context, question=question) inputs = tokenizer.encode(input_text, return_tensors='pt').to(device) # Generate the output with torch.no_grad(): outputs = model.generate(inputs, max_length=500) # Adjust max_length as needed # Decode and return the output answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer else: return "Error: Unable to process the document. Please ensure the PDF file is valid." # Define Gradio Interface input_file = gr.File(label="Upload PDF File") input_question = gr.Textbox(label="Ask about the document") output_text = gr.Textbox(label="Answer - Mistral Model") def pdf_qa(file, question): if file is None: return "Please upload a PDF file first." loop = asyncio.get_event_loop() answer = loop.run_until_complete(initialize(file.name, question)) return answer # Create Gradio Interface gr.Interface( fn=pdf_qa, inputs=[input_file, input_question], outputs=output_text, title="RAG Knowledge Retrieval using Mistral Model", description="Upload a PDF file and ask questions about the content." ).launch()