import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import gradio as gr # fix random seed for reproducibility tf.random.set_seed(7) def train_and_predict(file, epochs): # Load the dataset dataframe = pd.read_csv(file.name, usecols=[1], engine='python', encoding="big5") dataset = dataframe.values.astype('float32') # Normalize the dataset scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # Split into train and test sets train_size = int(len(dataset) * 0.8) train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] # Convert an array of values into a dataset matrix def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) # Reshape into X=t and Y=t+1 look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # Create and fit the LSTM network model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=epochs, batch_size=1, verbose=2) # Make predictions trainPredict = model.predict(trainX) testPredict = model.predict(testX) # Invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # Calculate root mean squared error trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0])) # Plot predictions trainPredictPlot = np.empty_like(dataset) trainPredictPlot[:, :] = np.nan trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict testPredictPlot = np.empty_like(dataset) testPredictPlot[:, :] = np.nan testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict plt.figure(figsize=(12, 8)) plt.plot(scaler.inverse_transform(dataset), label='Original Data') plt.plot(trainPredictPlot, label='Training Predictions', linestyle='--') plt.plot(testPredictPlot, label='Test Predictions', linestyle='--') plt.xlabel('Time') plt.ylabel('Scaled Values') plt.title('Original Data and Predictions') plt.legend() return (f'Train Score: {trainScore:.2f} RMSE\nTest Score: {testScore:.2f} RMSE'), plt # Gradio interface file_input = gr.File(label="Upload CSV File") epochs_input = gr.Slider(minimum=1, maximum=100, value=50, label="Epochs") output_text = gr.Textbox(label="Training and Testing RMSE Scores") output_plot = gr.Plot(label="Original Data and Predictions") gr.Interface( fn=train_and_predict, inputs=[file_input, epochs_input], outputs=[output_text, output_plot], title="LSTM Model for Time Series Prediction", description="Upload a CSV file with time series data and specify the number of epochs to train the model." ).launch()