Update LLM.py
Browse files
LLM.py
CHANGED
|
@@ -1,491 +1,266 @@
|
|
| 1 |
-
# LLM.py (
|
| 2 |
-
|
| 3 |
-
import httpx
|
| 4 |
-
from datetime import datetime
|
| 5 |
-
from typing import List, Dict, Any, Optional
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
from openai import AsyncOpenAI, RateLimitError, APIError
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
except ImportError:
|
| 14 |
-
print("❌ [LLMService] فشل استيراد R2Service أو LearningHubManager")
|
| 15 |
-
R2Service = None
|
| 16 |
-
LearningHubManager = None
|
| 17 |
-
|
| 18 |
-
# (V8.1) استيراد NewsFetcher
|
| 19 |
-
try:
|
| 20 |
-
from sentiment_news import NewsFetcher
|
| 21 |
-
except ImportError:
|
| 22 |
-
NewsFetcher = None
|
| 23 |
-
|
| 24 |
-
# (استيراد VADER هنا أيضاً للـ type hinting)
|
| 25 |
-
try:
|
| 26 |
-
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
| 27 |
-
except ImportError:
|
| 28 |
-
SentimentIntensityAnalyzer = None
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# (تحديث الإعدادات الافتراضية لتطابق NVIDIA)
|
| 32 |
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
|
| 33 |
-
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 34 |
LLM_MODEL = os.getenv("LLM_MODEL", "nvidia/llama-3.1-nemotron-ultra-253b-v1")
|
| 35 |
|
| 36 |
-
# (البارامترات المحددة من طرفك)
|
| 37 |
LLM_TEMPERATURE = 0.2
|
| 38 |
LLM_TOP_P = 0.7
|
| 39 |
LLM_MAX_TOKENS = 16384
|
| 40 |
LLM_FREQUENCY_PENALTY = 0.8
|
| 41 |
LLM_PRESENCE_PENALTY = 0.5
|
| 42 |
-
|
| 43 |
-
# إعدادات العميل
|
| 44 |
CLIENT_TIMEOUT = 300.0
|
| 45 |
|
| 46 |
class LLMService:
|
| 47 |
def __init__(self):
|
| 48 |
if not LLM_API_KEY:
|
| 49 |
-
raise ValueError("❌ [
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
print(f"✅ [LLMService V19.5] مهيأ. النموذج: {LLM_MODEL}")
|
| 59 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 60 |
-
print(f" -> Endpoint: {LLM_API_URL}")
|
| 61 |
-
except Exception as e:
|
| 62 |
-
# 🔴 --- START OF CHANGE (V19.5) --- 🔴
|
| 63 |
-
print(f"❌ [LLMService V19.5] فشل تهيئة AsyncOpenAI: {e}")
|
| 64 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 65 |
-
traceback.print_exc()
|
| 66 |
-
raise
|
| 67 |
|
| 68 |
-
|
| 69 |
-
self.r2_service: Optional[R2Service] = None
|
| 70 |
-
self.learning_hub: Optional[LearningHubManager] = None
|
| 71 |
-
self.news_fetcher: Optional[NewsFetcher] = None
|
| 72 |
-
self.vader_analyzer: Optional[SentimentIntensityAnalyzer] = None
|
| 73 |
|
| 74 |
async def _call_llm(self, prompt: str) -> Optional[str]:
|
| 75 |
-
"""
|
| 76 |
-
|
| 77 |
-
إجراء استدعاء API للنموذج الضخم (يستخدم الآن "detailed thinking on" كـ system prompt).
|
| 78 |
-
"""
|
| 79 |
-
|
| 80 |
system_prompt = "detailed thinking on"
|
| 81 |
|
| 82 |
-
payload = {
|
| 83 |
-
"model": LLM_MODEL,
|
| 84 |
-
"messages": [
|
| 85 |
-
{"role": "system", "content": system_prompt},
|
| 86 |
-
{"role": "user", "content": prompt} # (prompt يحتوي الآن على تعليمات JSON)
|
| 87 |
-
],
|
| 88 |
-
"temperature": LLM_TEMPERATURE,
|
| 89 |
-
"top_p": LLM_TOP_P,
|
| 90 |
-
"max_tokens": LLM_MAX_TOKENS,
|
| 91 |
-
"frequency_penalty": LLM_FREQUENCY_PENALTY,
|
| 92 |
-
"presence_penalty": LLM_PRESENCE_PENALTY,
|
| 93 |
-
"stream": False, # (يجب أن تكون False للحصول على JSON)
|
| 94 |
-
"response_format": {"type": "json_object"}
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
try:
|
| 98 |
-
response = await self.client.chat.completions.create(
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
print(f"❌ [LLMService] فشل في تحليل استجابة JSON.")
|
| 114 |
except Exception as e:
|
| 115 |
-
print(f"❌ [
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
return None
|
| 119 |
-
|
| 120 |
-
def _parse_llm_response_enhanced(self,
|
| 121 |
-
response_text: str,
|
| 122 |
-
fallback_strategy: str = "decision",
|
| 123 |
-
symbol: str = "N/A") -> Optional[Dict[str, Any]]:
|
| 124 |
-
"""
|
| 125 |
-
(محدث V8) محلل JSON ذكي ومتسامح مع الأخطاء.
|
| 126 |
-
"""
|
| 127 |
-
if not response_text:
|
| 128 |
-
print(f" ⚠️ [LLMParser] الاستجابة فارغة لـ {symbol}.")
|
| 129 |
-
return self._get_fallback_response(fallback_strategy, "Empty response")
|
| 130 |
-
|
| 131 |
-
# 1. محاولة تحليل JSON مباشرة (لأننا طلبنا response_format=json_object)
|
| 132 |
-
try:
|
| 133 |
-
return json.loads(response_text)
|
| 134 |
-
except json.JSONDecodeError:
|
| 135 |
-
print(f" ⚠️ [LLMParser] فشل تحليل JSON المباشر لـ {symbol}. محاولة استخراج JSON...")
|
| 136 |
-
pass # (الانتقال إلى المحاولة 2)
|
| 137 |
|
| 138 |
-
|
|
|
|
| 139 |
try:
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
return json.loads(json_string)
|
| 145 |
-
else:
|
| 146 |
-
print(f" ⚠️ [LLMParser] لم يتم العثور على JSON مطابق لـ {symbol}.")
|
| 147 |
-
raise json.JSONDecodeError("No JSON object found in text", response_text, 0)
|
| 148 |
-
except json.JSONDecodeError as e:
|
| 149 |
-
print(f" ❌ [LLMParser] فشل الاستخراج النهائي لـ {symbol}. نص الاستجابة: {response_text[:200]}...")
|
| 150 |
-
return self._get_fallback_response(fallback_strategy, f"Final JSON parse fail: {e}")
|
| 151 |
-
except Exception as e:
|
| 152 |
-
print(f" ❌ [LLMParser] خطأ غير متوقع في المحلل لـ {symbol}: {e}")
|
| 153 |
-
return self._get_fallback_response(fallback_strategy, f"Unexpected parser error: {e}")
|
| 154 |
-
|
| 155 |
-
def _get_fallback_response(self, strategy: str, reason: str) -> Optional[Dict[str, Any]]:
|
| 156 |
-
"""
|
| 157 |
-
(محدث V8) إرجاع استجابة آمنة عند فشل النموذج الضخم.
|
| 158 |
-
"""
|
| 159 |
-
print(f" 🚨 [LLMService] تفعيل الاستجابة الاحتياطية (Fallback) لاستراتيجية '{strategy}' (السبب: {reason})")
|
| 160 |
-
|
| 161 |
-
if strategy == "decision":
|
| 162 |
-
# (القرار الآمن: لا تتداول)
|
| 163 |
-
return {
|
| 164 |
-
"action": "NO_DECISION",
|
| 165 |
-
"strategy_to_watch": "GENERIC",
|
| 166 |
-
"confidence_level": 0,
|
| 167 |
-
"reasoning": f"LLM analysis failed: {reason}",
|
| 168 |
-
"exit_profile": "Standard"
|
| 169 |
-
}
|
| 170 |
-
elif strategy == "reanalysis":
|
| 171 |
-
# (القرار الآمن: استمر في الصفقة الحالية)
|
| 172 |
-
return {
|
| 173 |
-
"action": "HOLD",
|
| 174 |
-
"strategy": "MAINTAIN_CURRENT",
|
| 175 |
-
"reasoning": f"LLM re-analysis failed: {reason}. Maintaining current trade strategy."
|
| 176 |
-
}
|
| 177 |
-
elif strategy == "reflection":
|
| 178 |
-
# (القرار الآمن: لا تقم بإنشاء قاعدة تعلم)
|
| 179 |
-
return None # (سيمنع Reflector من إنشاء دلتا)
|
| 180 |
-
|
| 181 |
-
elif strategy == "distillation":
|
| 182 |
-
# (القرار ��لآمن: لا تقم بإنشاء قواعد مقطرة)
|
| 183 |
-
return None # (سيمنع Curator من المتابعة)
|
| 184 |
-
|
| 185 |
-
return None # (Fallback عام)
|
| 186 |
|
|
|
|
|
|
|
|
|
|
| 187 |
async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 188 |
-
"""
|
| 189 |
-
(محدث V8.1)
|
| 190 |
-
يستدعي النموذج الضخم لاتخاذ قرار "WATCH" استراتيجي (Explorer Brain).
|
| 191 |
-
"""
|
| 192 |
symbol = candidate_data.get('symbol', 'UNKNOWN')
|
| 193 |
try:
|
| 194 |
-
#
|
| 195 |
-
|
| 196 |
if self.learning_hub:
|
| 197 |
-
|
| 198 |
-
domain="general",
|
| 199 |
-
query=f"{symbol} strategy decision"
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
# 2. إنشاء الـ Prompt (باللغة الإنجليزية)
|
| 203 |
-
prompt = self._create_trading_prompt(candidate_data, learning_context_prompt)
|
| 204 |
-
|
| 205 |
-
if self.r2_service:
|
| 206 |
-
await self.r2_service.save_llm_prompts_async(symbol, "trading_decision", prompt, candidate_data)
|
| 207 |
|
| 208 |
-
#
|
|
|
|
|
|
|
|
|
|
| 209 |
response_text = await self._call_llm(prompt)
|
|
|
|
| 210 |
|
| 211 |
-
#
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
fallback_strategy="decision",
|
| 215 |
-
symbol=symbol
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
return decision_json
|
| 219 |
|
|
|
|
| 220 |
except Exception as e:
|
| 221 |
-
print(f"❌ [
|
| 222 |
traceback.print_exc()
|
| 223 |
-
return
|
| 224 |
|
|
|
|
|
|
|
|
|
|
| 225 |
async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 226 |
-
"""
|
| 227 |
-
(محدث V19.3)
|
| 228 |
-
يستدعي النموذج الضخم لإعادة تحليل صفقة مفتوحة (Reflector Brain).
|
| 229 |
-
"""
|
| 230 |
symbol = trade_data.get('symbol', 'UNKNOWN')
|
| 231 |
try:
|
| 232 |
-
|
| 233 |
-
|
| 234 |
if self.learning_hub:
|
| 235 |
-
|
| 236 |
-
domain="strategy",
|
| 237 |
-
query=f"{symbol} re-analysis {trade_data.get('strategy', 'GENERIC')}"
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
# 2. (V8.1) جلب أحدث الأخبار (باستخدام NewsFetcher المخصص)
|
| 241 |
-
latest_news_text = "News data unavailable for re-analysis."
|
| 242 |
-
latest_news_score = 0.0
|
| 243 |
-
|
| 244 |
-
# (استخدام self.vader_analyzer الذي تم حقنه)
|
| 245 |
-
if self.news_fetcher:
|
| 246 |
-
latest_news_text = await self.news_fetcher.get_news_for_symbol(symbol)
|
| 247 |
-
if self.vader_analyzer and latest_news_text: # (التحقق من المحلل المُمرر)
|
| 248 |
-
vader_scores = self.vader_analyzer.polarity_scores(latest_news_text)
|
| 249 |
-
latest_news_score = vader_scores.get('compound', 0.0)
|
| 250 |
-
|
| 251 |
-
current_data['latest_news_text'] = latest_news_text
|
| 252 |
-
current_data['latest_news_score'] = latest_news_score
|
| 253 |
|
| 254 |
-
|
| 255 |
-
prompt = await self._create_reanalysis_prompt(trade_data, current_data, learning_context_prompt)
|
| 256 |
|
| 257 |
-
if self.r2_service:
|
| 258 |
-
await self.r2_service.save_llm_prompts_async(symbol, "trade_reanalysis", prompt, current_data)
|
| 259 |
-
|
| 260 |
-
# 4. استدعاء النموذج الضخم (LLM)
|
| 261 |
response_text = await self._call_llm(prompt)
|
|
|
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
response_text,
|
| 266 |
-
fallback_strategy="reanalysis",
|
| 267 |
-
symbol=symbol
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
return decision_json
|
| 271 |
|
|
|
|
| 272 |
except Exception as e:
|
| 273 |
-
print(f"❌ [
|
| 274 |
-
|
| 275 |
-
return self._get_fallback_response("reanalysis", str(e)) # (إرجاع قرار آمن)
|
| 276 |
-
|
| 277 |
-
# --- (دوال إنشاء الـ Prompts) ---
|
| 278 |
-
# (ملاحظة: هذه الدوال يجب أن تكون دائماً باللغة الإنجليزية)
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
| 283 |
"""
|
| 284 |
-
|
| 285 |
-
إنشاء الـ Prompt (باللغة الإنجليزية) لاتخاذ قرار التداول الأولي (Explorer).
|
| 286 |
-
(تمت إزالة الدرجات المسبقة لتقليل الانحياز)
|
| 287 |
"""
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
# (تمت إزالة l1_score و l1_reasons عمداً)
|
| 293 |
-
pattern_data = candidate_data.get('pattern_analysis', {})
|
| 294 |
-
mc_data = candidate_data.get('monte_carlo_distribution', {})
|
| 295 |
-
|
| 296 |
-
# --- 2. استخراج بيانات المشاعر والأخبار (الطبقة 1) ---
|
| 297 |
-
news_text = candidate_data.get('news_text', 'No news text provided.')
|
| 298 |
-
news_score_raw = candidate_data.get('news_score_raw', 0.0)
|
| 299 |
-
statistical_news_pnl = candidate_data.get('statistical_news_pnl', 0.0)
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
exchange_flows = whale_data.get('exchange_flows', {})
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
total_inflow_24h_usd = accumulation_data_24h.get('to_exchanges_usd', 0.0)
|
| 315 |
-
total_outflow_24h_usd = accumulation_data_24h.get('from_exchanges_usd', 0.0)
|
| 316 |
-
relative_net_flow_24h_percent = accumulation_data_24h.get('relative_net_flow_percent', 0.0)
|
| 317 |
-
|
| 318 |
-
# --- 4. استخراج بيانات السوق (الطبقة 0) ---
|
| 319 |
-
market_context = candidate_data.get('sentiment_data', {})
|
| 320 |
-
market_trend = market_context.get('market_trend', 'UNKNOWN')
|
| 321 |
-
btc_sentiment = market_context.get('btc_sentiment', 'UNKNOWN')
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
{
|
| 328 |
-
|
| 329 |
-
"""
|
| 330 |
-
|
| 331 |
-
# 🔴 --- START OF CHANGE (V19.5) --- 🔴
|
| 332 |
-
# (تمت إزالة درجة l1_score و l1_reasons من هنا)
|
| 333 |
-
technical_summary_prompt = f"""
|
| 334 |
-
1. **Technical Analysis:**
|
| 335 |
-
* Chart Pattern: {pattern_data.get('pattern_detected', 'None')} (Conf: {pattern_data.get('pattern_confidence', 0):.2f})
|
| 336 |
-
* Monte Carlo (1h): {mc_data.get('probability_of_gain', 0) * 100:.1f}% chance of profit (Expected: {mc_data.get('expected_return_pct', 0):.2f}%)
|
| 337 |
-
"""
|
| 338 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 339 |
-
|
| 340 |
-
news_prompt = f"""
|
| 341 |
-
2. **News & Sentiment Analysis:**
|
| 342 |
-
* Market Trend: {market_trend} (BTC: {btc_sentiment})
|
| 343 |
-
* VADER (Raw): {news_score_raw:.3f}
|
| 344 |
-
* Statistical PnL (Learned): {statistical_news_pnl:+.2f}%
|
| 345 |
-
* News Text: {news_text[:300]}...
|
| 346 |
"""
|
| 347 |
-
|
| 348 |
-
3.
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
{
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
{
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
{{
|
| 386 |
-
"action": "WATCH" or "
|
| 387 |
-
"
|
| 388 |
-
"
|
| 389 |
-
"
|
| 390 |
-
"
|
| 391 |
}}
|
| 392 |
"""
|
| 393 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 394 |
-
|
| 395 |
-
# (نرسل فقط task_prompt لأنه يحتوي الآن على كل شيء)
|
| 396 |
-
return task_prompt
|
| 397 |
-
|
| 398 |
|
| 399 |
-
|
| 400 |
-
trade_data: Dict[str, Any],
|
| 401 |
-
current_data: Dict[str, Any],
|
| 402 |
-
learning_context: str) -> str:
|
| 403 |
"""
|
| 404 |
-
|
| 405 |
-
إنشاء الـ Prompt (باللغة الإنجليزية) لإعادة تحليل صفقة مفتوحة (Reflector Brain).
|
| 406 |
-
(تم إصلاح تنسيق مونت كارلو)
|
| 407 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
# --- 1. بيانات الصفقة الأصلية (القديمة) ---
|
| 412 |
-
original_strategy = trade_data.get('strategy', 'N/A')
|
| 413 |
-
original_reasoning = trade_data.get('decision_data', {}).get('reasoning', 'N/A')
|
| 414 |
-
entry_price = trade_data.get('entry_price', 0)
|
| 415 |
-
current_pnl = trade_data.get('pnl_percent', 0)
|
| 416 |
-
current_sl = trade_data.get('stop_loss', 0)
|
| 417 |
-
current_tp = trade_data.get('take_profit', 0)
|
| 418 |
-
|
| 419 |
-
# --- 2. البيانات الفنية المحدثة (الحالية) ---
|
| 420 |
-
current_price = current_data.get('current_price', 0)
|
| 421 |
-
mc_data = current_data.get('monte_carlo_distribution', {})
|
| 422 |
-
mc_prob = mc_data.get('probability_of_gain', 0)
|
| 423 |
-
mc_expected_return = mc_data.get('expected_return_pct', 0)
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
{learning_context}
|
| 439 |
-
{statistical_feedback}
|
| 440 |
-
--- END OF PLAYBOOK ---
|
| 441 |
-
"""
|
| 442 |
-
|
| 443 |
-
trade_status_prompt = f"""
|
| 444 |
-
1. **Open Trade Status ({symbol}):**
|
| 445 |
-
* Current PnL: {current_pnl:+.2f}%
|
| 446 |
-
* Original Strategy: {original_strategy}
|
| 447 |
-
* Original Reasoning: {original_reasoning}
|
| 448 |
-
* Entry Price: {entry_price}
|
| 449 |
-
* Current Price: {current_price}
|
| 450 |
-
* Current StopLoss: {current_sl}
|
| 451 |
-
* Current TakeProfit: {current_tp}
|
| 452 |
-
"""
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
* Latest News (VADER: {latest_news_score:.3f}): {latest_news_text[:300]}...
|
| 458 |
-
"""
|
| 459 |
-
|
| 460 |
-
# (دمج جميع التعليمات في رسالة الـ user)
|
| 461 |
-
task_prompt = f"""
|
| 462 |
-
CONTEXT:
|
| 463 |
-
You are an expert AI trading analyst (Reflector Brain).
|
| 464 |
-
An open trade for {symbol} has triggered a mandatory re-analysis. Analyze the new data and decide the next action.
|
| 465 |
-
{playbook_prompt}
|
| 466 |
-
|
| 467 |
-
--- START OF TRADE DATA ---
|
| 468 |
-
{trade_status_prompt}
|
| 469 |
-
{current_analysis_prompt}
|
| 470 |
-
--- END OF TRADE DATA ---
|
| 471 |
-
|
| 472 |
-
TASK:
|
| 473 |
-
1. **Internal Thinking (Private):** Perform a step-by-step analysis (as triggered by the system prompt).
|
| 474 |
-
* Compare the "Open Trade Status" with the "Current Real-time Analysis".
|
| 475 |
-
* Has the situation improved or deteriorated? (e.g., PnL is good, but new Monte Carlo is negative).
|
| 476 |
-
* Are there new critical news?
|
| 477 |
-
* Consult the "Playbook" for learned rules and statistical feedback.
|
| 478 |
-
2. **Final Decision:** Based on your internal thinking, decide the best course of action (HOLD, UPDATE_TRADE, CLOSE_TRADE).
|
| 479 |
-
3. **Output Constraint:** Provide your final answer ONLY in the requested JSON object format, with no introductory text, markdown formatting, or explanations.
|
| 480 |
-
|
| 481 |
-
OUTPUT (JSON Object ONLY):
|
| 482 |
{{
|
| 483 |
-
"action": "HOLD" or "
|
| 484 |
-
"
|
| 485 |
-
"
|
| 486 |
-
"
|
| 487 |
-
"new_take_profit": (float or null, required if action is 'UPDATE_TRADE')
|
| 488 |
}}
|
| 489 |
"""
|
| 490 |
-
|
| 491 |
-
|
|
|
|
| 1 |
+
# LLM.py (V13.4 - The "Heavyweight" Omniscient Brain)
|
| 2 |
+
# استعادة كامل التفاصيل في البرومبتات لضمان عدم وجود أي اختصارات.
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
import os, traceback, json, re, time
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from typing import Dict, Any, Optional
|
| 7 |
from openai import AsyncOpenAI, RateLimitError, APIError
|
| 8 |
|
| 9 |
+
# ==============================================================================
|
| 10 |
+
# 🔌 إعدادات الاتصال (مطابقة للأصل تماماً)
|
| 11 |
+
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
|
| 13 |
+
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 14 |
LLM_MODEL = os.getenv("LLM_MODEL", "nvidia/llama-3.1-nemotron-ultra-253b-v1")
|
| 15 |
|
|
|
|
| 16 |
LLM_TEMPERATURE = 0.2
|
| 17 |
LLM_TOP_P = 0.7
|
| 18 |
LLM_MAX_TOKENS = 16384
|
| 19 |
LLM_FREQUENCY_PENALTY = 0.8
|
| 20 |
LLM_PRESENCE_PENALTY = 0.5
|
|
|
|
|
|
|
| 21 |
CLIENT_TIMEOUT = 300.0
|
| 22 |
|
| 23 |
class LLMService:
|
| 24 |
def __init__(self):
|
| 25 |
if not LLM_API_KEY:
|
| 26 |
+
raise ValueError("❌ [LLM] LLM_API_KEY is missing!")
|
| 27 |
|
| 28 |
+
self.client = AsyncOpenAI(
|
| 29 |
+
base_url=LLM_API_URL,
|
| 30 |
+
api_key=LLM_API_KEY,
|
| 31 |
+
timeout=CLIENT_TIMEOUT
|
| 32 |
+
)
|
| 33 |
+
self.r2_service = None
|
| 34 |
+
self.learning_hub = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
print(f"🧠 [LLM V13.4] Heavyweight Brain Initialized: {LLM_MODEL}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
async def _call_llm(self, prompt: str) -> Optional[str]:
|
| 39 |
+
"""إرسال الطلب مع تفعيل وضع التفكير العميق بدقة"""
|
| 40 |
+
# ⚠️ هام: هذا الإعداد دقيق جداً لتفعيل قدرات Nemotron الخاصة
|
|
|
|
|
|
|
|
|
|
| 41 |
system_prompt = "detailed thinking on"
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
+
response = await self.client.chat.completions.create(
|
| 45 |
+
model=LLM_MODEL,
|
| 46 |
+
messages=[
|
| 47 |
+
{"role": "system", "content": system_prompt},
|
| 48 |
+
{"role": "user", "content": prompt}
|
| 49 |
+
],
|
| 50 |
+
temperature=LLM_TEMPERATURE,
|
| 51 |
+
top_p=LLM_TOP_P,
|
| 52 |
+
max_tokens=LLM_MAX_TOKENS,
|
| 53 |
+
frequency_penalty=LLM_FREQUENCY_PENALTY,
|
| 54 |
+
presence_penalty=LLM_PRESENCE_PENALTY,
|
| 55 |
+
stream=False,
|
| 56 |
+
response_format={"type": "json_object"}
|
| 57 |
+
)
|
| 58 |
+
return response.choices[0].message.content
|
|
|
|
| 59 |
except Exception as e:
|
| 60 |
+
print(f"❌ [LLM Call Error] {e}")
|
| 61 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
def _parse_json_secure(self, text: str) -> Optional[Dict]:
|
| 64 |
+
"""محلل JSON قوي يستخرج البيانات من أي نص"""
|
| 65 |
try:
|
| 66 |
+
match = re.search(r'\{.*\}', text, re.DOTALL)
|
| 67 |
+
if match: return json.loads(match.group(0))
|
| 68 |
+
except: pass
|
| 69 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
# ==================================================================
|
| 72 |
+
# 🧠 الوظيفة 1: قرار الدخول الاستراتيجي (تحليل شامل ومفصل)
|
| 73 |
+
# ==================================================================
|
| 74 |
async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
symbol = candidate_data.get('symbol', 'UNKNOWN')
|
| 76 |
try:
|
| 77 |
+
# جلب سياق التعلم السابق إن وجد
|
| 78 |
+
learning_context = "Playbook: No specific prior learning for this scenario."
|
| 79 |
if self.learning_hub:
|
| 80 |
+
learning_context = await self.learning_hub.get_active_context_for_llm("general", f"{symbol} entry analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# بناء البرومبت المفصل جداً
|
| 83 |
+
prompt = self._create_heavyweight_entry_prompt(candidate_data, learning_context)
|
| 84 |
+
|
| 85 |
+
# استدعاء النموذج
|
| 86 |
response_text = await self._call_llm(prompt)
|
| 87 |
+
decision = self._parse_json_secure(response_text)
|
| 88 |
|
| 89 |
+
# حفظ نسخة طبق الأصل من الطلب والرد للتدقيق
|
| 90 |
+
if self.r2_service and response_text:
|
| 91 |
+
await self.r2_service.save_llm_prompt_async(symbol, "entry_decision_full", prompt, response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
return decision
|
| 94 |
except Exception as e:
|
| 95 |
+
print(f"❌ [LLM Entry Error] {symbol}: {e}")
|
| 96 |
traceback.print_exc()
|
| 97 |
+
return None
|
| 98 |
|
| 99 |
+
# ==================================================================
|
| 100 |
+
# 🔄 الوظيفة 2: إعادة التحليل الدوري (مراجعة شاملة للوضع)
|
| 101 |
+
# ==================================================================
|
| 102 |
async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
symbol = trade_data.get('symbol', 'UNKNOWN')
|
| 104 |
try:
|
| 105 |
+
strategy = trade_data.get('entry_reason', 'GENERIC')
|
| 106 |
+
learning_context = "Playbook: Maintain original strategy unless validated invalidation occurs."
|
| 107 |
if self.learning_hub:
|
| 108 |
+
learning_context = await self.learning_hub.get_active_context_for_llm("strategy", f"{symbol} re-eval {strategy}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
prompt = self._create_heavyweight_reanalysis_prompt(trade_data, current_data, learning_context)
|
|
|
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
response_text = await self._call_llm(prompt)
|
| 113 |
+
decision = self._parse_json_secure(response_text)
|
| 114 |
|
| 115 |
+
if self.r2_service and response_text:
|
| 116 |
+
await self.r2_service.save_llm_prompt_async(symbol, "re_analysis_full", prompt, response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
return decision
|
| 119 |
except Exception as e:
|
| 120 |
+
print(f"❌ [LLM Re-Eval Error] {symbol}: {e}")
|
| 121 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
# ==================================================================
|
| 124 |
+
# 📝 قسم هندسة البرومبتات (تفاصيل كاملة بدون اختصارات)
|
| 125 |
+
# ==================================================================
|
| 126 |
+
def _create_heavyweight_entry_prompt(self, data: Dict[str, Any], learning_context: str) -> str:
|
| 127 |
"""
|
| 128 |
+
إنشاء برومبت ضخم يحتوي على كل شاردة وواردة من البيانات المتاحة.
|
|
|
|
|
|
|
| 129 |
"""
|
| 130 |
+
symbol = data.get('symbol')
|
| 131 |
+
current_price = data.get('current_price')
|
| 132 |
|
| 133 |
+
# 1. تفاصيل الطبقات السابقة (التحليل الفني والكمي)
|
| 134 |
+
titan_score = data.get('titan_details', {}).get('score', 0)
|
| 135 |
+
titan_trend = "STRONG_UP" if titan_score > 0.7 else "UP" if titan_score > 0.5 else "WEAK"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
pat_details = data.get('pattern_details', {})
|
| 138 |
+
pat_name = pat_details.get('pattern_detected', 'None')
|
| 139 |
+
pat_conf = pat_details.get('pattern_confidence', 0)
|
|
|
|
| 140 |
|
| 141 |
+
mc_score = data.get('components', {}).get('mc_score', 0)
|
| 142 |
+
l1_total = data.get('enhanced_final_score', 0)
|
| 143 |
+
l2_total = data.get('layer2_score', 0)
|
| 144 |
+
|
| 145 |
+
# 2. تفاصيل بيانات الحيتان (كاملة)
|
| 146 |
+
whale = data.get('whale_data', {})
|
| 147 |
+
whale_1h = whale.get('exchange_flows', {})
|
| 148 |
+
whale_24h = whale.get('accumulation_analysis_24h', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
whale_section = f"""
|
| 151 |
+
- 1H Net Flow to Exchanges: ${whale_1h.get('net_flow_usd', 0):,.2f}
|
| 152 |
+
- 1H Deposits: {whale_1h.get('deposit_count', 0)} | Withdrawals: {whale_1h.get('withdrawal_count', 0)}
|
| 153 |
+
- 24H Accumulation Flow: ${whale_24h.get('net_flow_usd', 0):,.2f}
|
| 154 |
+
- 24H Whale Transaction Count: {whale_24h.get('whale_transfers_count', 0)}
|
| 155 |
+
- Relative Flow Impact (24H): {whale_24h.get('relative_net_flow_percent', 0):.4f}%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
"""
|
| 157 |
+
|
| 158 |
+
# 3. تفاصيل الأخبار (النص الخام الكامل)
|
| 159 |
+
news_text = data.get('news_text', 'No specific news available for this asset currently.')
|
| 160 |
+
|
| 161 |
+
# 4. لقطة السوق (Price Action Snapshot)
|
| 162 |
+
ohlcv = data.get('ohlcv_sample', {})
|
| 163 |
+
price_section = ""
|
| 164 |
+
for tf, candle in ohlcv.items():
|
| 165 |
+
if candle:
|
| 166 |
+
# [Timestamp, Open, High, Low, Close, Volume]
|
| 167 |
+
price_section += f" - {tf.upper()}: Open={candle[1]}, High={candle[2]}, Low={candle[3]}, Close={candle[4]}, Vol={candle[5]}\n"
|
| 168 |
+
|
| 169 |
+
return f"""
|
| 170 |
+
YOU ARE THE OMNISCIENT BRAIN. A skeptical, master-level crypto trading AI.
|
| 171 |
+
Your goal is to validate the findings of your sub-systems and make the FINAL GO/NO-GO decision for {symbol}.
|
| 172 |
+
Current Price: {current_price}
|
| 173 |
+
|
| 174 |
+
========== 🧠 PART 1: SUB-SYSTEM REPORTS (PRELIMINARY ANALYSIS) ==========
|
| 175 |
+
Your subordinate systems have flagged this asset with the following scores:
|
| 176 |
+
* Layer 1 Technical Score: {l1_score:.4f} / 1.0
|
| 177 |
+
- Titan ML Trend Model: {titan_score:.4f} ({titan_trend})
|
| 178 |
+
- Chart Pattern Recognition: {pat_name} (Confidence: {pat_conf:.2f})
|
| 179 |
+
- Monte Carlo Probability (1H): {mc_score:.4f}
|
| 180 |
+
* Layer 2 Enhanced Score: {l2_total:.4f} / 1.0 (After initial whale/news weighting)
|
| 181 |
+
|
| 182 |
+
========== 🔍 PART 2: RAW EVIDENCE FOR VERIFICATION (THE TRUTH) ==========
|
| 183 |
+
Do not trust the scores above blindly. Verify them against this raw data:
|
| 184 |
+
|
| 185 |
+
[A] RAW PRICE ACTION SNAPSHOT (OHLCV Last Closed Candles):
|
| 186 |
+
{price_section}
|
| 187 |
+
-> TASK: Does this price action confirm the 'Titan Trend' reported above?
|
| 188 |
+
|
| 189 |
+
[B] RAW WHALE ON-CHAIN ACTIVITY:
|
| 190 |
+
{whale_section}
|
| 191 |
+
-> TASK: Is there hidden distribution (selling) despite the technical uptrend?
|
| 192 |
+
|
| 193 |
+
[C] RAW NEWSWIRE FEED (Latest Headlines & Summaries):
|
| 194 |
+
\"\"\"{news_text}\"\"\"
|
| 195 |
+
-> TASK: Are there any immediate red flags, FUD, or regulatory risks in this text?
|
| 196 |
+
|
| 197 |
+
========== 📖 PART 3: INSTITUTIONAL MEMORY (LEARNING PLAYBOOK) ==========
|
| 198 |
+
{learning_context}
|
| 199 |
+
|
| 200 |
+
========== 🛑 FINAL DECISION TASK ==========
|
| 201 |
+
Perform a deep, step-by-step internal analysis (triggered by your system mode).
|
| 202 |
+
Compare PART 1 (Opinions) vs PART 2 (Facts).
|
| 203 |
+
If FACTS contradict OPINIONS, you MUST reject the trade.
|
| 204 |
+
|
| 205 |
+
REQUIRED OUTPUT (Strict JSON format ONLY):
|
| 206 |
{{
|
| 207 |
+
"action": "WATCH" or "IGNORE",
|
| 208 |
+
"confidence_level": 0.00 to 1.00,
|
| 209 |
+
"reasoning": "A rigorous, professional justification citing specific raw evidence (e.g., 'Whale 1H inflows of $5M contradict Titan trend').",
|
| 210 |
+
"strategy_directive": "MOMENTUM_BREAKOUT" or "DIP_ACCUMULATION" or "SCALP_REVERSAL",
|
| 211 |
+
"key_risk_factor": "Identify the single biggest risk based on raw evidence."
|
| 212 |
}}
|
| 213 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
def _create_heavyweight_reanalysis_prompt(self, trade: Dict, current: Dict, learning_context: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 216 |
"""
|
| 217 |
+
إنشاء برومبت مفصل لإعادة تقييم صفقة مفتوحة بناءً على تغير الظروف.
|
|
|
|
|
|
|
| 218 |
"""
|
| 219 |
+
symbol = trade.get('symbol')
|
| 220 |
+
entry_price = trade.get('entry_price')
|
| 221 |
+
current_price = current.get('current_price')
|
| 222 |
+
pnl_pct = ((current_price - entry_price) / entry_price) * 100
|
| 223 |
+
duration_min = (datetime.now() - datetime.fromisoformat(trade.get('entry_time').replace('Z', ''))).total_seconds() / 60
|
| 224 |
+
|
| 225 |
+
# البيانات الحالية المقارنة
|
| 226 |
+
titan_now = current.get('titan_score', 0)
|
| 227 |
|
| 228 |
+
whale_now = current.get('whale_data', {})
|
| 229 |
+
whale_1h_net = whale_now.get('exchange_flows', {}).get('net_flow_usd', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
news_now = current.get('news_text', 'No new significant news.')
|
| 232 |
+
|
| 233 |
+
return f"""
|
| 234 |
+
ROLE: Omniscient Brain (Trade Guardian Mode).
|
| 235 |
+
EVENT: Mandatory periodic re-evaluation of OPEN POSITION.
|
| 236 |
+
ASSET: {symbol}
|
| 237 |
+
TIME IN TRADE: {duration_min:.1f} minutes
|
| 238 |
+
|
| 239 |
+
========== 📉 POSITION STATUS ==========
|
| 240 |
+
* Entry Price: {entry_price}
|
| 241 |
+
* Current Price: {current_price}
|
| 242 |
+
* Unrealized PnL: {pnl_pct:+.2f}%
|
| 243 |
+
* Original Entry Reason: "{trade.get('entry_reason')}"
|
| 244 |
+
|
| 245 |
+
========== 🆕 CHANGED MARKET CONDITIONS (RAW DATA) ==========
|
| 246 |
+
1. ML Trend Update (Titan): Currently {titan_now:.4f}
|
| 247 |
+
2. Fresh Whale Activity (Last 1H): Net Flow ${whale_1h_net:,.0f}
|
| 248 |
+
(Positive = potential selling pressure, Negative = accumulation)
|
| 249 |
+
3. Latest News Update:
|
| 250 |
+
\"\"\"{news_now[:1000]}\"\"\"
|
| 251 |
+
|
| 252 |
+
========== 📖 PLAYBOOK GUIDELINES ==========
|
| 253 |
{learning_context}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
========== 🛡️ GUARDIAN DECISION ==========
|
| 256 |
+
Analyze if the original investment thesis is still valid based on the NEW raw data.
|
| 257 |
+
Output Strict JSON ONLY:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
{{
|
| 259 |
+
"action": "HOLD" or "EMERGENCY_EXIT" or "UPDATE_TARGETS",
|
| 260 |
+
"suggested_new_tp": null or float value,
|
| 261 |
+
"suggested_new_sl": null or float value,
|
| 262 |
+
"reasoning": "Professional assessment of current risk vs original thesis."
|
|
|
|
| 263 |
}}
|
| 264 |
"""
|
| 265 |
+
|
| 266 |
+
print("✅ LLM Service V13.4 (Heavyweight Omniscient Brain) Loaded - NO SHORTCUTS")
|