import torch class LossScaler: def __init__(self, scale=1): self.cur_scale = scale # `params` is a list / generator of torch.Variable def has_overflow(self, params): return False # `x` is a torch.Tensor def _has_inf_or_nan(x): return False # `overflow` is boolean indicating whether we overflowed in gradient def update_scale(self, overflow): pass @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def backward(self, loss): scaled_loss = loss*self.loss_scale scaled_loss.backward() class DynamicLossScaler: def __init__(self, init_scale=2**32, scale_factor=2., scale_window=1000): self.cur_scale = init_scale self.cur_iter = 0 self.last_overflow_iter = -1 self.scale_factor = scale_factor self.scale_window = scale_window # `params` is a list / generator of torch.Variable def has_overflow(self, params): # return False for p in params: if p.grad is not None and DynamicLossScaler._has_inf_or_nan(p.grad.data): return True return False # `x` is a torch.Tensor def _has_inf_or_nan(x): cpu_sum = float(x.float().sum()) if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum: return True return False # `overflow` is boolean indicating whether we overflowed in gradient def update_scale(self, overflow): if overflow: #self.cur_scale /= self.scale_factor self.cur_scale = max(self.cur_scale/self.scale_factor, 1) self.last_overflow_iter = self.cur_iter else: if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: self.cur_scale *= self.scale_factor # self.cur_scale = 1 self.cur_iter += 1 @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def backward(self, loss): scaled_loss = loss*self.loss_scale scaled_loss.backward() ############################################################## # Example usage below here -- assuming it's in a separate file ############################################################## if __name__ == "__main__": import torch from torch.autograd import Variable from dynamic_loss_scaler import DynamicLossScaler # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold inputs and outputs, and wrap them in Variables. x = Variable(torch.randn(N, D_in), requires_grad=False) y = Variable(torch.randn(N, D_out), requires_grad=False) w1 = Variable(torch.randn(D_in, H), requires_grad=True) w2 = Variable(torch.randn(H, D_out), requires_grad=True) parameters = [w1, w2] learning_rate = 1e-6 optimizer = torch.optim.SGD(parameters, lr=learning_rate) loss_scaler = DynamicLossScaler() for t in range(500): y_pred = x.mm(w1).clamp(min=0).mm(w2) loss = (y_pred - y).pow(2).sum() * loss_scaler.loss_scale print('Iter {} loss scale: {}'.format(t, loss_scaler.loss_scale)) print('Iter {} scaled loss: {}'.format(t, loss.data[0])) print('Iter {} unscaled loss: {}'.format(t, loss.data[0] / loss_scaler.loss_scale)) # Run backprop optimizer.zero_grad() loss.backward() # Check for overflow has_overflow = DynamicLossScaler.has_overflow(parameters) # If no overflow, unscale grad and update as usual if not has_overflow: for param in parameters: param.grad.data.mul_(1. / loss_scaler.loss_scale) optimizer.step() # Otherwise, don't do anything -- ie, skip iteration else: print('OVERFLOW!') # Update loss scale for next iteration loss_scaler.update_scale(has_overflow)