import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open("class_names.txt", "r") as f: # reading them in from class_names.txt class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms preparation ### # Create model effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=101, # could also use len(class_names) ) # Load saved weights effnetb2.load_state_dict( torch.load( f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = effnetb2_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode effnetb2.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(effnetb2(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "Food Classifier" description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into 101 classes. Check out the list of classes [here](https://huggingface.co/spaces/Rishikesh22/Food_classification/raw/main/class_names.txt)" burger_example_path = "burger.jpg" # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)"), ], examples=[[burger_example_path]], title=title, description=description, ) # Launch the app! demo.launch()