Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,788 +1,419 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
# From Talk to Task — Windowed extraction + two latency measures
|
| 3 |
-
# Model: swiss-ai/Apertus-8B-Instruct-2509
|
| 4 |
-
# Few-shot: 1 each EN/FR/DE/IT; deterministic by default; optional sampling fallback toggle.
|
| 5 |
-
# Soft token cap: 1024 by default. CUDA fp16 + optional 4-bit. GT scoring + downloads.
|
| 6 |
-
|
| 7 |
-
import os
|
| 8 |
-
import re
|
| 9 |
-
import time
|
| 10 |
-
import json
|
| 11 |
-
import csv
|
| 12 |
-
import zipfile
|
| 13 |
-
from pathlib import Path
|
| 14 |
-
from typing import Dict, Tuple, Optional, List
|
| 15 |
-
|
| 16 |
-
import gradio as gr
|
| 17 |
-
|
| 18 |
-
# --------------------------- MODEL / LABELS ---------------------------------
|
| 19 |
-
|
| 20 |
-
DEFAULT_REPO = "swiss-ai/Apertus-8B-Instruct-2509"
|
| 21 |
-
|
| 22 |
-
DEFAULT_LABEL_SET = [
|
| 23 |
-
"plan_contact",
|
| 24 |
-
"schedule_meeting",
|
| 25 |
-
"update_contact_info_non_postal",
|
| 26 |
-
"update_contact_info_postal_address",
|
| 27 |
-
"update_kyc_activity",
|
| 28 |
-
"update_kyc_origin_of_assets",
|
| 29 |
-
"update_kyc_purpose_of_businessrelation",
|
| 30 |
-
"update_kyc_total_assets",
|
| 31 |
-
]
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"
|
| 44 |
-
"
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Few-shot: exactly one per language (compact)
|
| 50 |
-
FEW_SHOTS = [
|
| 51 |
-
# EN
|
| 52 |
-
{"transcript": "Agent: Can we meet Friday 3pm on Teams?\nClient: Yes, Friday 3pm works.\nAgent: I’ll send the invite.",
|
| 53 |
-
"labels": ["schedule_meeting"]},
|
| 54 |
-
# FR
|
| 55 |
-
{"transcript": "Client: Mon numéro a changé: +41 44 000 00 00.\nConseiller: Merci, je mets à jour vos coordonnées.",
|
| 56 |
-
"labels": ["update_contact_info_non_postal"]},
|
| 57 |
-
# DE
|
| 58 |
-
{"transcript": "Kunde: Neue Postadresse: Musterstrasse 1, 8000 Zürich.\nBerater: Danke, ich aktualisiere die Postadresse.",
|
| 59 |
-
"labels": ["update_contact_info_postal_address"]},
|
| 60 |
-
# IT
|
| 61 |
-
{"transcript": "Cliente: Totale patrimonio confermato a 8 milioni CHF.\nConsulente: Aggiorno i dati KYC sul totale degli asset.",
|
| 62 |
-
"labels": ["update_kyc_total_assets"]},
|
| 63 |
-
]
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
#
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# keyword windows (EN/FR/DE/IT) — expand as needed
|
| 97 |
-
WINDOW_KEYWORDS = [
|
| 98 |
-
# meeting / schedule
|
| 99 |
-
r"\b(meet|meeting|schedule|appointment|teams|zoom|google meet|calendar)\b",
|
| 100 |
-
r"\b(rendez[- ]?vous|réunion|planifier|calendrier|teams|zoom)\b",
|
| 101 |
-
r"\b(termin|treffen|besprechung|kalender|teams|zoom)\b",
|
| 102 |
-
r"\b(appuntamento|riunione|calendario|teams|zoom)\b",
|
| 103 |
-
# address / phone / email
|
| 104 |
-
r"\b(address|street|avenue|road|postcode|phone|email)\b",
|
| 105 |
-
r"\b(adresse|rue|avenue|code postal|téléphone|courriel|email)\b",
|
| 106 |
-
r"\b(adresse|straße|strasse|plz|telefon|e-?mail)\b",
|
| 107 |
-
r"\b(indirizzo|via|cap|telefono|e-?mail)\b",
|
| 108 |
-
# KYC assets / totals / origin / purpose
|
| 109 |
-
r"\b(total assets|net worth|portfolio|real estate|origin of assets|source of wealth|purpose of relationship)\b",
|
| 110 |
-
r"\b(actifs totaux|patrimoine|immobilier|origine des fonds|source de richesse|but de la relation)\b",
|
| 111 |
-
r"\b(gesamtverm(ö|o)gen|verm(ö|o)gen|immobilien|herkunft der verm(ö|o)genswerte|zweck der gesch(ä|a)ftsbeziehung)\b",
|
| 112 |
-
r"\b(patrimonio totale|immobiliare|origine dei fondi|scopo della relazione)\b",
|
| 113 |
-
r"\b(chf|eur|usd|cur[13]|francs?)\b",
|
| 114 |
-
r"\b(\d{1,3}([.'’ ]\d{3})*(,\d+)?)(\s?(chf|eur|usd))\b",
|
| 115 |
-
]
|
| 116 |
|
| 117 |
-
def
|
| 118 |
-
|
| 119 |
-
if s.startswith("{") and s.endswith("}"):
|
| 120 |
-
return s
|
| 121 |
-
m = re.search(r"\{.*\}", s, re.DOTALL)
|
| 122 |
-
return m.group(0) if m else '{"labels": []}'
|
| 123 |
|
| 124 |
-
def
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
if lab in allowed and lab not in seen:
|
| 133 |
-
clean.append(lab); seen.add(lab)
|
| 134 |
-
return clean
|
| 135 |
-
|
| 136 |
-
def read_rules_labels(file_obj: Optional[gr.File]) -> Optional[List[str]]:
|
| 137 |
-
if not file_obj:
|
| 138 |
-
return None
|
| 139 |
-
try:
|
| 140 |
-
data = json.loads(Path(file_obj.name).read_text(encoding="utf-8"))
|
| 141 |
-
labs = data.get("labels", [])
|
| 142 |
-
return [x for x in labs if isinstance(x, str)]
|
| 143 |
-
except Exception:
|
| 144 |
-
return None
|
| 145 |
|
| 146 |
-
def
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
try:
|
| 150 |
-
|
| 151 |
-
labels = data.get("labels", [])
|
| 152 |
-
return [lab for lab in labels if isinstance(lab, str)]
|
| 153 |
except Exception:
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
def
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
| 159 |
return out
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
return out
|
| 174 |
|
| 175 |
-
def
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
f"### Transcript\n{transcript}\n\n"
|
| 191 |
-
"### Output\nReturn JSON only: {\"labels\": [...]}"
|
| 192 |
-
)
|
| 193 |
-
|
| 194 |
-
def prf1_accuracy(pred: List[str], gold: List[str]) -> Tuple[float, float, float, float, Dict[str, int]]:
|
| 195 |
-
pset, gset = set(pred), set(gold)
|
| 196 |
-
tp = len(pset & gset); fp = len(pset - gset); fn = len(gset - pset)
|
| 197 |
-
prec = tp / (tp + fp) if (tp + fp) else 0.0
|
| 198 |
-
rec = tp / (tp + fn) if (tp + fn) else 0.0
|
| 199 |
-
f1 = 2 * prec * rec / (prec + rec) if (prec + rec) else 0.0
|
| 200 |
-
denom = len(pset | gset)
|
| 201 |
-
acc = (tp / denom) if denom else 1.0
|
| 202 |
-
return prec, rec, f1, acc, {"tp": tp, "fp": fp, "fn": fn, "pred_total": len(pset), "gold_total": len(gset)}
|
| 203 |
-
|
| 204 |
-
def per_label_counts(pred: List[str], gold: List[str], all_labels: List[str]) -> Dict[str, Dict[str, int]]:
|
| 205 |
-
pset, gset = set(pred), set(gold)
|
| 206 |
-
out = {}
|
| 207 |
-
for lab in all_labels:
|
| 208 |
-
tp = 1 if (lab in pset and lab in gset) else 0
|
| 209 |
-
fp = 1 if (lab in pset and lab not in gset) else 0
|
| 210 |
-
fn = 1 if (lab in gset and lab not in pset) else 0
|
| 211 |
-
out[lab] = {"tp": tp, "fp": fp, "fn": fn}
|
| 212 |
-
return out
|
| 213 |
-
|
| 214 |
-
def hamming_loss(pred: List[str], gold: List[str], all_labels: List[str]) -> float:
|
| 215 |
-
pset, gset = set(pred), set(gold)
|
| 216 |
-
wrong = 0
|
| 217 |
-
for lab in all_labels:
|
| 218 |
-
in_p, in_g = (lab in pset), (lab in gset)
|
| 219 |
-
wrong += int(in_p != in_g)
|
| 220 |
-
return wrong / max(1, len(all_labels))
|
| 221 |
-
|
| 222 |
-
def write_csv(path: Path, rows: List[List[str]]):
|
| 223 |
-
with path.open("w", newline="", encoding="utf-8") as f:
|
| 224 |
-
w = csv.writer(f); w.writerows(rows)
|
| 225 |
-
|
| 226 |
-
def card_markdown(title: str, value: str, hint: str = "") -> str:
|
| 227 |
-
hint_md = f"<div style='font-size:12px;opacity:0.8'>{hint}</div>" if hint else ""
|
| 228 |
-
return f"""
|
| 229 |
-
<div style="border:1px solid #3a3a3a;border-radius:10px;padding:10px;margin:6px">
|
| 230 |
-
<div style="font-weight:600">{title}</div>
|
| 231 |
-
<div style="font-size:20px;margin-top:4px">{value}</div>
|
| 232 |
-
{hint_md}
|
| 233 |
-
</div>
|
| 234 |
-
"""
|
| 235 |
-
|
| 236 |
-
# ------------------- WINDOWED EXTRACTION (fix for empty labels) -------------------
|
| 237 |
-
|
| 238 |
-
def extract_windows(text: str, max_windows: int = 6, half_span_lines: int = 3) -> str:
|
| 239 |
-
"""
|
| 240 |
-
Find up to `max_windows` windows around keyword hits; each window is ±`half_span_lines` lines.
|
| 241 |
-
If no hits, return the FIRST 8k characters instead of last chunk (common cause of misses).
|
| 242 |
-
"""
|
| 243 |
-
lines = text.splitlines()
|
| 244 |
-
n = len(lines)
|
| 245 |
-
# collect hit line indices
|
| 246 |
-
hits: List[int] = []
|
| 247 |
-
pattern = re.compile("|".join(WINDOW_KEYWORDS), re.IGNORECASE)
|
| 248 |
-
for i, ln in enumerate(lines):
|
| 249 |
-
if pattern.search(ln):
|
| 250 |
-
hits.append(i)
|
| 251 |
-
# de-duplicate and cap
|
| 252 |
-
unique_hits = []
|
| 253 |
-
seen = set()
|
| 254 |
-
for idx in hits:
|
| 255 |
-
# bucket nearby hits to avoid redundant windows
|
| 256 |
-
bucket = idx // 2 # coarse bucketing
|
| 257 |
-
if bucket not in seen:
|
| 258 |
-
seen.add(bucket)
|
| 259 |
-
unique_hits.append(idx)
|
| 260 |
-
unique_hits = unique_hits[:max_windows]
|
| 261 |
-
|
| 262 |
-
if not unique_hits:
|
| 263 |
-
# return the opening chunk; most KYC/context often appears early
|
| 264 |
-
return "\n".join(lines[: min(2000, n)])
|
| 265 |
-
|
| 266 |
-
# Build windows and merge
|
| 267 |
-
windows = []
|
| 268 |
-
for idx in unique_hits:
|
| 269 |
-
a = max(0, idx - half_span_lines)
|
| 270 |
-
b = min(n, idx + half_span_lines + 1)
|
| 271 |
-
windows.append("\n".join(lines[a:b]))
|
| 272 |
-
return "\n...\n".join(windows)
|
| 273 |
-
|
| 274 |
-
# -------------------------- MODEL -----------------------------------
|
| 275 |
-
|
| 276 |
-
class HFModel:
|
| 277 |
-
def __init__(
|
| 278 |
-
self,
|
| 279 |
-
repo_id: str,
|
| 280 |
-
revision: Optional[str],
|
| 281 |
-
token: Optional[str],
|
| 282 |
-
load_in_4bit: bool,
|
| 283 |
-
dtype
|
| 284 |
-
):
|
| 285 |
self.repo_id = repo_id
|
| 286 |
-
self.
|
| 287 |
-
self.
|
| 288 |
-
self.load_in_4bit = load_in_4bit and (DEVICE == "cuda")
|
| 289 |
-
self.dtype = dtype
|
| 290 |
self.tokenizer = None
|
| 291 |
self.model = None
|
| 292 |
|
| 293 |
def load(self):
|
| 294 |
qcfg = None
|
| 295 |
-
if self.load_in_4bit:
|
| 296 |
qcfg = BitsAndBytesConfig(
|
| 297 |
load_in_4bit=True,
|
| 298 |
bnb_4bit_quant_type="nf4",
|
| 299 |
bnb_4bit_compute_dtype=torch.float16,
|
| 300 |
bnb_4bit_use_double_quant=True,
|
| 301 |
)
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
)
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
device_map="auto" if DEVICE == "cuda" else None,
|
| 311 |
-
|
|
|
|
|
|
|
| 312 |
)
|
| 313 |
-
|
| 314 |
-
|
| 315 |
|
| 316 |
@torch.inference_mode()
|
| 317 |
-
def
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
kwargs = dict(
|
| 330 |
-
max_new_tokens=max_new_tokens,
|
| 331 |
-
pad_token_id=tok.eos_token_id,
|
| 332 |
-
eos_token_id=tok.eos_token_id,
|
| 333 |
-
)
|
| 334 |
-
if allow_sampling:
|
| 335 |
-
kwargs.update(dict(do_sample=True, temperature=0.25, top_p=0.9))
|
| 336 |
else:
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
"
|
| 351 |
-
"
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
key = (repo_id, revision, load_in_4bit)
|
| 359 |
-
if key in _MODEL_CACHE:
|
| 360 |
-
return _MODEL_CACHE[key]
|
| 361 |
-
mdl = HFModel(repo_id, revision, HF_TOKEN, load_in_4bit, DTYPE_FALLBACK)
|
| 362 |
-
mdl.load()
|
| 363 |
-
_MODEL_CACHE[key] = mdl
|
| 364 |
-
return mdl
|
| 365 |
-
|
| 366 |
-
# ---------------------- INFERENCE ROUTES ----------------------------
|
| 367 |
-
|
| 368 |
-
def preprocess_text(txt: str, add_header: bool, strip_smalltalk: bool) -> str:
|
| 369 |
-
lines = [ln.rstrip() for ln in txt.splitlines()]
|
| 370 |
-
lines = [ln for ln in lines if not RE_DISCLAIMER.match(ln)]
|
| 371 |
-
lines = [ln for ln in lines if not RE_DROP.search(ln)]
|
| 372 |
-
if strip_smalltalk:
|
| 373 |
-
lines = [ln for ln in lines if not SMALLTALK_RE.search(ln)]
|
| 374 |
-
cleaned = "\n".join(lines[-32768:])
|
| 375 |
-
return f"[EMAIL/MESSAGE SIGNAL]\n{cleaned}" if add_header else cleaned
|
| 376 |
-
|
| 377 |
-
def window_then_cap(text: str, soft_token_cap: int) -> Tuple[str, str]:
|
| 378 |
-
"""
|
| 379 |
-
Apply keyword windowing; then hard cap by approximate chars (~4 chars/token).
|
| 380 |
-
Returns (final_text, info_string).
|
| 381 |
-
"""
|
| 382 |
-
windowed = extract_windows(text)
|
| 383 |
-
approx_chars = int(max(soft_token_cap, 0) * 4) if soft_token_cap else 0
|
| 384 |
-
info = "windowed"
|
| 385 |
-
if approx_chars and len(windowed) > approx_chars:
|
| 386 |
-
windowed = windowed[:approx_chars]
|
| 387 |
-
info = f"windowed + soft cap ~{soft_token_cap}t"
|
| 388 |
-
return windowed, info
|
| 389 |
-
|
| 390 |
-
def run_single(
|
| 391 |
-
custom_repo_id: str,
|
| 392 |
-
rules_json: Optional[gr.File],
|
| 393 |
-
system_instructions: str,
|
| 394 |
-
context_text: str,
|
| 395 |
-
transcript: str,
|
| 396 |
-
soft_token_cap: int,
|
| 397 |
-
preprocess: bool,
|
| 398 |
-
add_header: bool,
|
| 399 |
-
strip_smalltalk: bool,
|
| 400 |
-
load_in_4bit: bool,
|
| 401 |
-
hourly_rate: float,
|
| 402 |
-
gt_json_file: Optional[gr.File],
|
| 403 |
-
use_fewshot: bool,
|
| 404 |
-
enable_fallback_sampling: bool,
|
| 405 |
-
):
|
| 406 |
-
"""Returns: repo, revision, predicted_json, metric_cards_md, diag_cards_md, raw_metrics_json"""
|
| 407 |
-
|
| 408 |
-
total_t0 = time.perf_counter() # TOTAL latency starts here
|
| 409 |
-
|
| 410 |
-
repo = (custom_repo_id or DEFAULT_REPO).strip()
|
| 411 |
-
revision = "main"
|
| 412 |
-
allowed = read_rules_labels(rules_json) or DEFAULT_LABEL_SET
|
| 413 |
-
|
| 414 |
-
# Preprocess + window + cap
|
| 415 |
-
effective_len_before = len(transcript)
|
| 416 |
-
if preprocess:
|
| 417 |
-
transcript = preprocess_text(transcript, add_header, strip_smalltalk)
|
| 418 |
-
windowed, cap_info = window_then_cap(transcript, soft_token_cap)
|
| 419 |
-
effective_len_after = len(windowed)
|
| 420 |
-
|
| 421 |
-
# Build prompt
|
| 422 |
-
system = system_instructions or SYSTEM_INSTRUCTIONS_BASE
|
| 423 |
-
prompt = build_prompt(system, context_text or CONTEXT_GUIDE, windowed, allowed, use_fewshot)
|
| 424 |
-
|
| 425 |
-
model = get_model(repo, revision, load_in_4bit)
|
| 426 |
-
|
| 427 |
-
# Deterministic pass only
|
| 428 |
-
raw_json, tok_stats, model_latency = model.generate_json(prompt, max_new_tokens=48, allow_sampling=False)
|
| 429 |
-
pred_labels = safe_json_labels(raw_json, allowed)
|
| 430 |
-
|
| 431 |
-
# Optional fallback sampling (OFF by default)
|
| 432 |
-
fallback_used = False
|
| 433 |
-
if enable_fallback_sampling and not pred_labels:
|
| 434 |
-
raw_json2, tok_stats2, model_latency2 = model.generate_json(prompt, max_new_tokens=48, allow_sampling=True)
|
| 435 |
-
pred_labels2 = safe_json_labels(raw_json2, allowed)
|
| 436 |
-
if pred_labels2:
|
| 437 |
-
pred_labels = pred_labels2
|
| 438 |
-
tok_stats = tok_stats2
|
| 439 |
-
model_latency = model_latency2
|
| 440 |
-
fallback_used = True
|
| 441 |
-
|
| 442 |
-
total_latency = time.perf_counter() - total_t0
|
| 443 |
-
est_cost = (total_latency / 3600.0) * max(0.0, float(hourly_rate or 0.0))
|
| 444 |
-
|
| 445 |
-
# Ground truth
|
| 446 |
-
gt_labels = read_single_ground_truth(gt_json_file)
|
| 447 |
-
pr = rc = f1 = acc = 0.0
|
| 448 |
-
ham = None
|
| 449 |
-
missing = []; extra = []; per_label = {}
|
| 450 |
-
if gt_labels is not None:
|
| 451 |
-
pr, rc, f1, acc, counts = prf1_accuracy(pred_labels, gt_labels)
|
| 452 |
-
ham = hamming_loss(pred_labels, gt_labels, allowed)
|
| 453 |
-
per_label = per_label_counts(pred_labels, gt_labels, allowed)
|
| 454 |
-
missing = sorted(list(set(gt_labels) - set(pred_labels)))
|
| 455 |
-
extra = sorted(list(set(pred_labels) - set(gt_labels)))
|
| 456 |
-
|
| 457 |
-
# Metric cards
|
| 458 |
-
def card(title, val, hint=""):
|
| 459 |
-
return card_markdown(title, val, hint)
|
| 460 |
-
metric_cards = ""
|
| 461 |
-
metric_cards += card("Precision", f"{pr:.3f}" if gt_labels is not None else "—", "Correct positives / All predicted positives")
|
| 462 |
-
metric_cards += card("Recall", f"{rc:.3f}" if gt_labels is not None else "—", "Correct positives / All actual positives")
|
| 463 |
-
metric_cards += card("F1 score", f"{f1:.3f}" if gt_labels is not None else "—", "Harmonic mean of Precision & Recall")
|
| 464 |
-
metric_cards += card("Exact match", f"{1.0 if gt_labels and set(pred_labels)==set(gt_labels) else 0.0 if gt_labels is not None else '—'}", "1.0 if predicted set equals truth")
|
| 465 |
-
metric_cards += card("Hamming loss", f"{ham:.3f}" if ham is not None else "—", "Fraction of labels where prediction disagrees with truth (lower better)")
|
| 466 |
-
metric_cards += card("Missing labels", json.dumps(missing, ensure_ascii=False) if gt_labels is not None else "—", "Expected but not predicted")
|
| 467 |
-
metric_cards += card("Extra labels", json.dumps(extra, ensure_ascii=False) if gt_labels is not None else "—", "Predicted but not expected")
|
| 468 |
-
|
| 469 |
-
# Diagnostics cards — now with TWO latency measures
|
| 470 |
-
diag_cards = ""
|
| 471 |
-
diag_cards += card("Model / Rev", f"{repo} / {revision}")
|
| 472 |
-
diag_cards += card("Device", f"{DEVICE} ({GPU_NAME})")
|
| 473 |
-
diag_cards += card("Precision dtype", f"{DTYPE_FALLBACK}")
|
| 474 |
-
diag_cards += card("4-bit", f"{bool(load_in_4bit)}")
|
| 475 |
-
diag_cards += card("Allowed labels", json.dumps(allowed, ensure_ascii=False))
|
| 476 |
-
diag_cards += card("Effective text length", f"before={effective_len_before} chars → after={effective_len_after} ({cap_info})")
|
| 477 |
-
diag_cards += card("Tokens", f"prompt={tok_stats['prompt_tokens']}, output={tok_stats['output_tokens']}, total={tok_stats['total_tokens']}", "Token counts influence latency & cost")
|
| 478 |
-
diag_cards += card("Model latency", f"{model_latency:.2f} s", "Time spent in model.generate(...) only")
|
| 479 |
-
diag_cards += card("Total latency", f"{total_latency:.2f} s", "End-to-end time (preprocess → model → postprocess)")
|
| 480 |
-
diag_cards += card("Cost (est.)", f"${(est_cost):.6f} @ {hourly_rate:.4f}/hr")
|
| 481 |
-
diag_cards += card("Fallback sampling used", "Yes" if fallback_used else "No", "Sampling can be slower/unstable on T4; off by default")
|
| 482 |
-
|
| 483 |
-
raw_metrics = {
|
| 484 |
-
"labels_pred": pred_labels,
|
| 485 |
-
"ground_truth_labels": gt_labels,
|
| 486 |
-
"precision": round(pr, 4) if gt_labels is not None else None,
|
| 487 |
-
"recall": round(rc, 4) if gt_labels is not None else None,
|
| 488 |
-
"f1": round(f1, 4) if gt_labels is not None else None,
|
| 489 |
-
"exact_match": 1.0 if gt_labels and set(pred_labels)==set(gt_labels) else (0.0 if gt_labels is not None else None),
|
| 490 |
-
"hamming_loss": round(ham, 4) if ham is not None else None,
|
| 491 |
-
"missing": missing if gt_labels is not None else None,
|
| 492 |
-
"extra": extra if gt_labels is not None else None,
|
| 493 |
-
"per_label": per_label if gt_labels is not None else None,
|
| 494 |
-
"token_stats": tok_stats,
|
| 495 |
-
"model_latency_seconds": round(model_latency, 3),
|
| 496 |
-
"total_latency_seconds": round(total_latency, 3),
|
| 497 |
-
"estimated_cost_usd": round(est_cost, 6),
|
| 498 |
-
"fallback_used": fallback_used,
|
| 499 |
-
"cap_info": cap_info,
|
| 500 |
-
}
|
| 501 |
-
|
| 502 |
-
return (
|
| 503 |
-
repo, revision,
|
| 504 |
-
json.dumps({"labels": pred_labels}, ensure_ascii=False),
|
| 505 |
-
metric_cards, diag_cards,
|
| 506 |
-
json.dumps(raw_metrics, indent=2)
|
| 507 |
-
)
|
| 508 |
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
try:
|
| 532 |
-
|
| 533 |
-
txt_names = [n for n in z.namelist() if n.lower().endswith(".txt")]
|
| 534 |
except Exception as e:
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
rows = [["filename","labels"]]
|
| 541 |
-
per_sample_rows = [["filename","pred_labels","gold_labels","precision","recall","f1","exact_match","hamming_loss","missing","extra","model_latency_s","total_latency_s","prompt_tokens","output_tokens"]]
|
| 542 |
-
totals = {"tp":0,"fp":0,"fn":0,"pred_total":0,"gold_total":0}
|
| 543 |
-
label_global = {lab: {"tp":0,"fp":0,"fn":0} for lab in allowed}
|
| 544 |
-
total_prompt_tokens = 0; total_output_tokens = 0; sum_model_s = 0.0; sum_total_s = 0.0
|
| 545 |
-
n=0; with_gt=0
|
| 546 |
|
| 547 |
-
|
|
|
|
| 548 |
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
total_t0 = time.perf_counter() # TOTAL latency per file
|
| 556 |
-
|
| 557 |
-
if preprocess:
|
| 558 |
-
txt = preprocess_text(txt, add_header, strip_smalltalk)
|
| 559 |
-
txt_windowed, cap_info = window_then_cap(txt, soft_token_cap)
|
| 560 |
-
|
| 561 |
-
prompt = build_prompt(system, context_text or CONTEXT_GUIDE, txt_windowed, allowed, use_fewshot)
|
| 562 |
-
|
| 563 |
-
raw_json, tok_stats, model_latency = model.generate_json(prompt, max_new_tokens=48, allow_sampling=False)
|
| 564 |
-
pred = safe_json_labels(raw_json, allowed)
|
| 565 |
-
if enable_fallback_sampling and not pred:
|
| 566 |
-
raw_json2, tok_stats2, model_latency2 = model.generate_json(prompt, max_new_tokens=48, allow_sampling=True)
|
| 567 |
-
pred2 = safe_json_labels(raw_json2, allowed)
|
| 568 |
-
if pred2:
|
| 569 |
-
pred = pred2; tok_stats = tok_stats2; model_latency = model_latency2
|
| 570 |
-
|
| 571 |
-
total_latency = time.perf_counter() - total_t0
|
| 572 |
-
|
| 573 |
-
total_prompt_tokens += tok_stats["prompt_tokens"]
|
| 574 |
-
total_output_tokens += tok_stats["output_tokens"]
|
| 575 |
-
sum_model_s += model_latency
|
| 576 |
-
sum_total_s += total_latency
|
| 577 |
-
n += 1
|
| 578 |
-
|
| 579 |
-
rows.append([name, json.dumps(pred, ensure_ascii=False)])
|
| 580 |
-
|
| 581 |
-
stem = Path(name).with_suffix("").name
|
| 582 |
-
gold = gt_map.get(stem)
|
| 583 |
-
if gold is not None:
|
| 584 |
-
with_gt += 1
|
| 585 |
-
pr, rc, f1, acc, counts = prf1_accuracy(pred, gold)
|
| 586 |
-
ham = hamming_loss(pred, gold, allowed)
|
| 587 |
-
missing = sorted(list(set(gold) - set(pred)))
|
| 588 |
-
extra = sorted(list(set(pred) - set(gold)))
|
| 589 |
-
for k in ["tp","fp","fn","pred_total","gold_total"]:
|
| 590 |
-
totals[k] += counts[k]
|
| 591 |
-
pl = per_label_counts(pred, gold, allowed)
|
| 592 |
-
for lab, c in pl.items():
|
| 593 |
-
for k in ["tp","fp","fn"]:
|
| 594 |
-
label_global[lab][k] += c[k]
|
| 595 |
-
per_sample_rows.append([
|
| 596 |
-
name,
|
| 597 |
-
json.dumps(pred, ensure_ascii=False),
|
| 598 |
-
json.dumps(gold, ensure_ascii=False),
|
| 599 |
-
round(pr,4), round(rc,4), round(f1,4),
|
| 600 |
-
1.0 if set(pred)==set(gold) else 0.0,
|
| 601 |
-
round(ham,4),
|
| 602 |
-
json.dumps(missing, ensure_ascii=False),
|
| 603 |
-
json.dumps(extra, ensure_ascii=False),
|
| 604 |
-
round(model_latency,3), round(total_latency,3),
|
| 605 |
-
tok_stats["prompt_tokens"], tok_stats["output_tokens"],
|
| 606 |
-
])
|
| 607 |
-
else:
|
| 608 |
-
per_sample_rows.append([
|
| 609 |
-
name, json.dumps(pred, ensure_ascii=False), None, None, None, None, None, None, None, None,
|
| 610 |
-
round(model_latency,3), round(total_latency,3),
|
| 611 |
-
tok_stats["prompt_tokens"], tok_stats["output_tokens"],
|
| 612 |
-
])
|
| 613 |
-
|
| 614 |
-
tp, fp, fn = totals["tp"], totals["fp"], totals["fn"]
|
| 615 |
-
prec = tp / (tp + fp) if (tp + fp) else 0.0
|
| 616 |
-
rec = tp / (tp + fn) if (tp + fn) else 0.0
|
| 617 |
-
f1 = 2 * prec * rec / (prec + rec) if (prec + rec) else 0.0
|
| 618 |
-
est_cost = (sum_total_s / 3600.0) * max(0.0, float(hourly_rate or 0.0))
|
| 619 |
-
|
| 620 |
-
coverage = {lab: 0 for lab in allowed}
|
| 621 |
-
for r in rows[1:]:
|
| 622 |
-
try:
|
| 623 |
-
labs = set(json.loads(r[1]))
|
| 624 |
-
for lab in labs:
|
| 625 |
-
if lab in coverage:
|
| 626 |
-
coverage[lab] += 1
|
| 627 |
-
except Exception:
|
| 628 |
-
pass
|
| 629 |
-
|
| 630 |
-
summary = {
|
| 631 |
-
"files_processed": n,
|
| 632 |
-
"files_with_ground_truth": with_gt,
|
| 633 |
-
"labels_allowed": allowed,
|
| 634 |
-
"precision_micro": round(prec, 4),
|
| 635 |
-
"recall_micro": round(rec, 4),
|
| 636 |
-
"f1_micro": round(f1, 4),
|
| 637 |
-
"per_label_counts": label_global,
|
| 638 |
-
"coverage_counts": coverage,
|
| 639 |
-
"token_stats": {
|
| 640 |
-
"prompt_tokens_total": total_prompt_tokens,
|
| 641 |
-
"output_tokens_total": total_output_tokens,
|
| 642 |
-
"total_tokens": total_prompt_tokens + total_output_tokens,
|
| 643 |
-
"avg_prompt_tokens": round(total_prompt_tokens / n, 2) if n else 0.0,
|
| 644 |
-
"avg_output_tokens": round(total_output_tokens / n, 2) if n else 0.0,
|
| 645 |
-
},
|
| 646 |
-
"latency_seconds_model_total": round(sum_model_s, 3),
|
| 647 |
-
"latency_seconds_total": round(sum_total_s, 3),
|
| 648 |
-
"avg_model_latency_seconds": round(sum_model_s / n, 3) if n else 0.0,
|
| 649 |
-
"avg_total_latency_seconds": round(sum_total_s / n, 3) if n else 0.0,
|
| 650 |
-
"estimated_cost_usd": round(est_cost, 6),
|
| 651 |
-
}
|
| 652 |
-
|
| 653 |
-
# Diagnostic cards (HTML)
|
| 654 |
-
diag_cards = ""
|
| 655 |
-
def card(title, val, hint=""):
|
| 656 |
-
return card_markdown(title, val, hint)
|
| 657 |
-
diag_cards += card("Model / Rev", f"{repo} / {revision}")
|
| 658 |
-
diag_cards += card("Device", f"{DEVICE} ({GPU_NAME})")
|
| 659 |
-
diag_cards += card("Precision dtype", f"{DTYPE_FALLBACK}")
|
| 660 |
-
diag_cards += card("4-bit", f"{bool(load_in_4bit)}")
|
| 661 |
-
diag_cards += card("Files processed", f"{n} (with GT: {with_gt})")
|
| 662 |
-
diag_cards += card("Tokens (totals)", f"prompt={total_prompt_tokens}, output={total_output_tokens}")
|
| 663 |
-
diag_cards += card("Latency (model)", f"total={summary['latency_seconds_model_total']} s, avg={summary['avg_model_latency_seconds']} s")
|
| 664 |
-
diag_cards += card("Latency (total)", f"total={summary['latency_seconds_total']} s, avg={summary['avg_total_latency_seconds']} s")
|
| 665 |
-
diag_cards += card("Cost (est.)", f"${summary['estimated_cost_usd']} @ {hourly_rate:.4f}/hr")
|
| 666 |
-
diag_cards += card("Allowed labels", json.dumps(allowed, ensure_ascii=False))
|
| 667 |
-
|
| 668 |
-
# Artifacts
|
| 669 |
-
tmp_dir = Path("/tmp")
|
| 670 |
-
pred_csv = tmp_dir / "predictions.csv"
|
| 671 |
-
per_sample_csv = tmp_dir / "per_sample_metrics.csv"
|
| 672 |
-
summary_json = tmp_dir / "summary_metrics.json"
|
| 673 |
-
with pred_csv.open("w", newline="", encoding="utf-8") as f:
|
| 674 |
-
w = csv.writer(f); w.writerows(rows)
|
| 675 |
-
with per_sample_csv.open("w", newline="", encoding="utf-8") as f:
|
| 676 |
-
w = csv.writer(f); w.writerows(per_sample_rows)
|
| 677 |
-
summary_json.write_text(json.dumps(summary, indent=2), encoding="utf-8")
|
| 678 |
-
|
| 679 |
-
return (
|
| 680 |
-
repo, revision,
|
| 681 |
-
"\n".join([",".join(r) for r in rows]),
|
| 682 |
-
diag_cards,
|
| 683 |
-
json.dumps(summary, indent=2),
|
| 684 |
-
str(pred_csv), str(per_sample_csv), str(summary_json)
|
| 685 |
)
|
| 686 |
|
| 687 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 688 |
|
| 689 |
-
with gr.Blocks(
|
|
|
|
| 690 |
gr.Markdown(
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
**Default model:** `{DEFAULT_REPO}` (GPU + 4-bit recommended).
|
| 695 |
-
Now includes **keyword windowing** (keeps early cues) and **two latency measures**:
|
| 696 |
-
- **Model latency:** time spent inside the model generate call
|
| 697 |
-
- **Total latency:** end-to-end time (preprocess → model → postprocess)
|
| 698 |
-
|
| 699 |
-
Upload ground truth to compute **Precision / Recall / F1 / Exact match / Hamming loss**.
|
| 700 |
-
Upload a **Rules JSON** (`{{"labels":[...]}}`) to override allowed labels.
|
| 701 |
-
|
| 702 |
-
**Model output schema:** `{{"labels": [...]}}`
|
| 703 |
-
"""
|
| 704 |
)
|
| 705 |
|
| 706 |
with gr.Row():
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
use_fewshot = gr.Checkbox(value=True, label="Use few-shot (1 per EN/FR/DE/IT)")
|
| 713 |
-
enable_fallback_sampling = gr.Checkbox(value=False, label="Enable fallback sampling (slower/unstable on T4)")
|
| 714 |
-
|
| 715 |
-
rules_file = gr.File(label="Rules JSON (optional) — overrides allowed labels", file_types=[".json"])
|
| 716 |
-
|
| 717 |
-
system = gr.Textbox(label="Instructions (System)", value=SYSTEM_INSTRUCTIONS_BASE, lines=6)
|
| 718 |
-
context = gr.Textbox(label="Context (User prefix)", value=CONTEXT_GUIDE, lines=6)
|
| 719 |
-
|
| 720 |
-
with gr.Row():
|
| 721 |
-
soft_cap = gr.Slider(512, 32768, value=1024, step=1, label="Soft token cap (approx; applied after keyword windows)")
|
| 722 |
-
preprocess = gr.Checkbox(value=True, label="Enable preprocessing")
|
| 723 |
-
add_header = gr.Checkbox(value=True, label="Add cues header")
|
| 724 |
-
strip_smalltalk = gr.Checkbox(value=False, label="Strip smalltalk")
|
| 725 |
-
hourly_rate = gr.Number(value=0.40, precision=4, label="Hourly hardware price (USD) for cost estimate")
|
| 726 |
-
|
| 727 |
-
with gr.Tabs():
|
| 728 |
-
with gr.Tab("Single Transcript"):
|
| 729 |
-
transcript = gr.Textbox(label="Paste transcript (EN/FR/DE/IT)", lines=14)
|
| 730 |
-
gt_single = gr.File(label="Ground truth JSON — {\"labels\": [..]}", file_types=[".json"])
|
| 731 |
-
run_btn = gr.Button("Run (Single)", variant="primary")
|
| 732 |
-
|
| 733 |
-
repo_used = gr.Textbox(label="Repo used", interactive=False)
|
| 734 |
-
rev_used = gr.Textbox(label="Revision", interactive=False)
|
| 735 |
-
json_out = gr.Code(label="Predicted JSON", language="json")
|
| 736 |
-
|
| 737 |
-
metric_cards_md = gr.HTML(label="Metrics (cards)")
|
| 738 |
-
diag_cards_md = gr.HTML(label="Diagnostics (cards)")
|
| 739 |
-
raw_metrics = gr.Code(label="Raw metrics JSON", language="json")
|
| 740 |
-
|
| 741 |
-
def _single(*args):
|
| 742 |
-
return run_single(*args)
|
| 743 |
-
|
| 744 |
-
run_btn.click(
|
| 745 |
-
_single,
|
| 746 |
-
inputs=[
|
| 747 |
-
custom_repo, rules_file, system, context, transcript,
|
| 748 |
-
soft_cap, preprocess, add_header, strip_smalltalk,
|
| 749 |
-
load_4bit, hourly_rate, gt_single, use_fewshot, enable_fallback_sampling
|
| 750 |
-
],
|
| 751 |
-
outputs=[repo_used, rev_used, json_out, metric_cards_md, diag_cards_md, raw_metrics],
|
| 752 |
)
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
run_batch_btn = gr.Button("Run (Batch)", variant="primary")
|
| 758 |
-
|
| 759 |
-
repo_used_b = gr.Textbox(label="Repo used", interactive=False)
|
| 760 |
-
rev_used_b = gr.Textbox(label="Revision", interactive=False)
|
| 761 |
-
csv_out = gr.Textbox(label="Predictions CSV (filename,labels)", lines=12)
|
| 762 |
-
|
| 763 |
-
diag_cards_b = gr.HTML(label="Diagnostics (cards)")
|
| 764 |
-
metrics_out_b = gr.Code(label="Summary metrics JSON", language="json")
|
| 765 |
-
|
| 766 |
-
preds_file = gr.File(label="Download predictions.csv")
|
| 767 |
-
per_sample_file = gr.File(label="Download per_sample_metrics.csv")
|
| 768 |
-
summary_file = gr.File(label="Download summary_metrics.json")
|
| 769 |
-
|
| 770 |
-
def _batch(*args):
|
| 771 |
-
return run_batch(*args)
|
| 772 |
-
|
| 773 |
-
run_batch_btn.click(
|
| 774 |
-
_batch,
|
| 775 |
-
inputs=[
|
| 776 |
-
custom_repo, rules_file, system, context, zip_in, gt_zip,
|
| 777 |
-
soft_cap, preprocess, add_header, strip_smalltalk,
|
| 778 |
-
load_4bit, hourly_rate, use_fewshot, enable_fallback_sampling
|
| 779 |
-
],
|
| 780 |
-
outputs=[repo_used_b, rev_used_b, csv_out, diag_cards_b, metrics_out_b, preds_file, per_sample_file, summary_file],
|
| 781 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 782 |
|
| 783 |
-
gr.
|
| 784 |
-
|
| 785 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
)
|
| 787 |
|
| 788 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
Allowed Labels (strict, case-insensitive match; output must use canonical label text exactly):
|
| 3 |
+
{allowed_labels_list}
|
| 4 |
+
|
| 5 |
+
Instructions:
|
| 6 |
+
1) Extract every concrete task the advisor or client must take.
|
| 7 |
+
2) For each, choose ONE label from Allowed Labels (or leave empty if none match).
|
| 8 |
+
3) Output STRICT JSON only, no prose:
|
| 9 |
+
{{
|
| 10 |
+
"labels": ["LabelA","LabelB", ...],
|
| 11 |
+
"tasks": [
|
| 12 |
+
{{"label": "LabelA", "explanation": "…", "evidence": "…"}},
|
| 13 |
+
{{"label": "LabelB", "explanation": "…", "evidence": "…"}}
|
| 14 |
+
]
|
| 15 |
+
}}
|
| 16 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# =========================
|
| 19 |
+
# Utilities
|
| 20 |
+
# =========================
|
| 21 |
+
def _now_ms() -> int:
|
| 22 |
+
return int(time.time() * 1000)
|
| 23 |
+
|
| 24 |
+
def read_file_to_text(file: gr.File) -> str:
|
| 25 |
+
if not file or not file.name:
|
| 26 |
+
return ""
|
| 27 |
+
name = file.name.lower()
|
| 28 |
+
data = file.read()
|
| 29 |
+
# Restrict to light parsers (txt/md/json) for speed/reliability
|
| 30 |
+
if name.endswith(".json"):
|
| 31 |
+
try:
|
| 32 |
+
obj = json.loads(data.decode("utf-8", errors="ignore"))
|
| 33 |
+
# Accept either {"transcript": "..."} or list/str
|
| 34 |
+
if isinstance(obj, dict) and "transcript" in obj:
|
| 35 |
+
return str(obj["transcript"])
|
| 36 |
+
return json.dumps(obj, ensure_ascii=False)
|
| 37 |
+
except Exception:
|
| 38 |
+
return data.decode("utf-8", errors="ignore")
|
| 39 |
+
else:
|
| 40 |
+
# txt / md or anything texty
|
| 41 |
+
try:
|
| 42 |
+
return data.decode("utf-8", errors="ignore")
|
| 43 |
+
except Exception:
|
| 44 |
+
try:
|
| 45 |
+
return data.decode("latin-1", errors="ignore")
|
| 46 |
+
except Exception:
|
| 47 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
def normalize_labels(labels: List[str]) -> List[str]:
|
| 50 |
+
return list(dict.fromkeys([l.strip() for l in labels if isinstance(l, str) and l.strip()]))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
def canonicalize_map(allowed: List[str]) -> Dict[str, str]:
|
| 53 |
+
"""
|
| 54 |
+
Build a case-insensitive map: lowercase -> canonical label
|
| 55 |
+
"""
|
| 56 |
+
m = {}
|
| 57 |
+
for lab in allowed:
|
| 58 |
+
m[lab.lower()] = lab
|
| 59 |
+
return m
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
def robust_json_extract(text: str) -> Dict[str, Any]:
|
| 62 |
+
"""
|
| 63 |
+
Try to parse strict JSON from model output.
|
| 64 |
+
If the model added extra tokens, strip to first {...} block.
|
| 65 |
+
"""
|
| 66 |
+
if not text:
|
| 67 |
+
return {"labels": [], "tasks": []}
|
| 68 |
+
|
| 69 |
+
# Find first JSON object
|
| 70 |
+
start = text.find("{")
|
| 71 |
+
end = text.rfind("}")
|
| 72 |
+
if start != -1 and end != -1 and end > start:
|
| 73 |
+
candidate = text[start : end + 1]
|
| 74 |
+
else:
|
| 75 |
+
candidate = text
|
| 76 |
+
|
| 77 |
+
# Remove trailing junk commas and try json.loads
|
| 78 |
try:
|
| 79 |
+
return json.loads(candidate)
|
|
|
|
|
|
|
| 80 |
except Exception:
|
| 81 |
+
# Fallback: try to repair common issues
|
| 82 |
+
candidate = re.sub(r",\s*}", "}", candidate)
|
| 83 |
+
candidate = re.sub(r",\s*]", "]", candidate)
|
| 84 |
+
try:
|
| 85 |
+
return json.loads(candidate)
|
| 86 |
+
except Exception:
|
| 87 |
+
return {"labels": [], "tasks": []}
|
| 88 |
|
| 89 |
+
def restrict_to_allowed(pred: Dict[str, Any], allowed: List[str]) -> Dict[str, Any]:
|
| 90 |
+
"""
|
| 91 |
+
Keep only tasks whose label ∈ allowed; map case-insensitively to canonical.
|
| 92 |
+
"""
|
| 93 |
+
out = {"labels": [], "tasks": []}
|
| 94 |
+
if not isinstance(pred, dict):
|
| 95 |
return out
|
| 96 |
+
raw_labels = pred.get("labels", []) or []
|
| 97 |
+
raw_tasks = pred.get("tasks", []) or []
|
| 98 |
+
|
| 99 |
+
allowed_map = canonicalize_map(allowed)
|
| 100 |
+
|
| 101 |
+
# Filter labels
|
| 102 |
+
filt_labels: List[str] = []
|
| 103 |
+
for l in raw_labels:
|
| 104 |
+
if not isinstance(l, str):
|
| 105 |
+
continue
|
| 106 |
+
k = l.strip().lower()
|
| 107 |
+
if k in allowed_map:
|
| 108 |
+
filt_labels.append(allowed_map[k])
|
| 109 |
+
filt_labels = normalize_labels(filt_labels)
|
| 110 |
+
|
| 111 |
+
# Filter tasks
|
| 112 |
+
filt_tasks = []
|
| 113 |
+
for t in raw_tasks:
|
| 114 |
+
if not isinstance(t, dict):
|
| 115 |
+
continue
|
| 116 |
+
lbl = t.get("label", "")
|
| 117 |
+
k = str(lbl).strip().lower()
|
| 118 |
+
if k in allowed_map:
|
| 119 |
+
new_t = dict(t)
|
| 120 |
+
new_t["label"] = allowed_map[k]
|
| 121 |
+
filt_tasks.append(new_t)
|
| 122 |
+
|
| 123 |
+
# Ensure labels reflect tasks (union)
|
| 124 |
+
from_tasks = [tt["label"] for tt in filt_tasks if isinstance(tt.get("label"), str)]
|
| 125 |
+
merged = normalize_labels(list(set(filt_labels) | set(from_tasks)))
|
| 126 |
+
|
| 127 |
+
out["labels"] = merged
|
| 128 |
+
out["tasks"] = filt_tasks
|
| 129 |
return out
|
| 130 |
|
| 131 |
+
def truncate_tokens(tokenizer, text: str, max_input_tokens: int) -> str:
|
| 132 |
+
if max_input_tokens <= 0:
|
| 133 |
+
return text
|
| 134 |
+
toks = tokenizer(text, add_special_tokens=False, return_attention_mask=False, return_tensors=None)["input_ids"]
|
| 135 |
+
if len(toks) <= max_input_tokens:
|
| 136 |
+
return text
|
| 137 |
+
# Keep the tail (most recent part of the convo often carries actionable tasks)
|
| 138 |
+
keep_ids = toks[-max_input_tokens:]
|
| 139 |
+
return tokenizer.decode(keep_ids, skip_special_tokens=True)
|
| 140 |
+
|
| 141 |
+
# =========================
|
| 142 |
+
# Model Loading
|
| 143 |
+
# =========================
|
| 144 |
+
class ModelWrapper:
|
| 145 |
+
def __init__(self, repo_id: str, hf_token: Optional[str], load_in_4bit: bool):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
self.repo_id = repo_id
|
| 147 |
+
self.hf_token = hf_token
|
| 148 |
+
self.load_in_4bit = load_in_4bit
|
|
|
|
|
|
|
| 149 |
self.tokenizer = None
|
| 150 |
self.model = None
|
| 151 |
|
| 152 |
def load(self):
|
| 153 |
qcfg = None
|
| 154 |
+
if self.load_in_4bit and DEVICE == "cuda":
|
| 155 |
qcfg = BitsAndBytesConfig(
|
| 156 |
load_in_4bit=True,
|
| 157 |
bnb_4bit_quant_type="nf4",
|
| 158 |
bnb_4bit_compute_dtype=torch.float16,
|
| 159 |
bnb_4bit_use_double_quant=True,
|
| 160 |
)
|
| 161 |
+
|
| 162 |
+
tok = AutoTokenizer.from_pretrained(
|
| 163 |
+
self.repo_id,
|
| 164 |
+
token=self.hf_token,
|
| 165 |
+
cache_dir=str(SPACE_CACHE),
|
| 166 |
+
trust_remote_code=True,
|
| 167 |
+
use_fast=True,
|
| 168 |
)
|
| 169 |
+
# Some models lack pad token—safe default
|
| 170 |
+
if tok.pad_token is None and tok.eos_token is not None:
|
| 171 |
+
tok.pad_token = tok.eos_token
|
| 172 |
+
|
| 173 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 174 |
+
self.repo_id,
|
| 175 |
+
token=self.hf_token,
|
| 176 |
+
cache_dir=str(SPACE_CACHE),
|
| 177 |
+
trust_remote_code=True,
|
| 178 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
| 179 |
device_map="auto" if DEVICE == "cuda" else None,
|
| 180 |
+
low_cpu_mem_usage=True,
|
| 181 |
+
quantization_config=qcfg,
|
| 182 |
+
attn_implementation="sdpa", # T4-safe and faster than 'eager'
|
| 183 |
)
|
| 184 |
+
self.tokenizer = tok
|
| 185 |
+
self.model = model
|
| 186 |
|
| 187 |
@torch.inference_mode()
|
| 188 |
+
def generate(self, system_prompt: str, user_prompt: str) -> str:
|
| 189 |
+
# Chat template if available; otherwise a simple format
|
| 190 |
+
if hasattr(self.tokenizer, "apply_chat_template"):
|
| 191 |
+
messages = [
|
| 192 |
+
{"role": "system", "content": system_prompt},
|
| 193 |
+
{"role": "user", "content": user_prompt},
|
| 194 |
+
]
|
| 195 |
+
input_ids = self.tokenizer.apply_chat_template(
|
| 196 |
+
messages,
|
| 197 |
+
add_generation_prompt=True,
|
| 198 |
+
return_tensors="pt",
|
| 199 |
+
).to(self.model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
else:
|
| 201 |
+
text = f"<s>[SYSTEM]\n{system_prompt}\n[/SYSTEM]\n[USER]\n{user_prompt}\n[/USER]\n"
|
| 202 |
+
input_ids = self.tokenizer(text, return_tensors="pt").to(self.model.device)
|
| 203 |
+
|
| 204 |
+
with torch.cuda.amp.autocast(enabled=(DEVICE == "cuda")):
|
| 205 |
+
out_ids = self.model.generate(
|
| 206 |
+
**input_ids,
|
| 207 |
+
generation_config=GEN_CONFIG,
|
| 208 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 209 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 210 |
+
)
|
| 211 |
+
out = self.tokenizer.decode(out_ids[0], skip_special_tokens=True)
|
| 212 |
+
# Heuristic: strip the prompting part if the model echoes input
|
| 213 |
+
if "}" in out:
|
| 214 |
+
tail = out[out.rfind("}") + 1 :]
|
| 215 |
+
body = out[: out.rfind("}") + 1]
|
| 216 |
+
# Prefer the last JSON object if multiple
|
| 217 |
+
if "{" in tail and "}" in tail:
|
| 218 |
+
# do nothing—rare; handled by robust_json_extract
|
| 219 |
+
pass
|
| 220 |
+
return body
|
| 221 |
+
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
+
# Keep one live model per repo for snappy re-runs
|
| 224 |
+
_MODEL_CACHE: Dict[str, ModelWrapper] = {}
|
| 225 |
+
|
| 226 |
+
def get_model(repo_id: str, hf_token: Optional[str], load_in_4bit: bool) -> ModelWrapper:
|
| 227 |
+
key = f"{repo_id}::{'4bit' if (load_in_4bit and DEVICE=='cuda') else 'full'}"
|
| 228 |
+
if key not in _MODEL_CACHE:
|
| 229 |
+
mw = ModelWrapper(repo_id, hf_token, load_in_4bit)
|
| 230 |
+
mw.load()
|
| 231 |
+
_MODEL_CACHE[key] = mw
|
| 232 |
+
return _MODEL_CACHE[key]
|
| 233 |
+
|
| 234 |
+
# =========================
|
| 235 |
+
# Inference Pipeline
|
| 236 |
+
# =========================
|
| 237 |
+
def run_extraction(
|
| 238 |
+
transcript_text: str,
|
| 239 |
+
transcript_file: gr.File,
|
| 240 |
+
allowed_labels_text: str,
|
| 241 |
+
model_repo: str,
|
| 242 |
+
use_4bit: bool,
|
| 243 |
+
max_input_tokens: int,
|
| 244 |
+
hf_token: str,
|
| 245 |
+
) -> Tuple[str, str, str, str]:
|
| 246 |
+
|
| 247 |
+
t0 = _now_ms()
|
| 248 |
+
|
| 249 |
+
# 1) Get transcript: prefer file (drag-drop), else textarea
|
| 250 |
+
raw_text = ""
|
| 251 |
+
if transcript_file:
|
| 252 |
+
raw_text = read_file_to_text(transcript_file)
|
| 253 |
+
if not raw_text:
|
| 254 |
+
raw_text = transcript_text or ""
|
| 255 |
+
raw_text = raw_text.strip()
|
| 256 |
+
|
| 257 |
+
if not raw_text:
|
| 258 |
+
return "", "", "No transcript provided.", json.dumps({"labels": [], "tasks": []}, ensure_ascii=False, indent=2)
|
| 259 |
+
|
| 260 |
+
# 2) Allowed labels: combine UI text with default (so we NEVER end up empty)
|
| 261 |
+
user_allowed = [ln.strip() for ln in (allowed_labels_text or "").splitlines() if ln.strip()]
|
| 262 |
+
allowed = normalize_labels(user_allowed or DEFAULT_ALLOWED_LABELS)
|
| 263 |
+
|
| 264 |
+
# 3) Load model
|
| 265 |
+
hf_tok = hf_token.strip() or None
|
| 266 |
try:
|
| 267 |
+
model = get_model(model_repo, hf_tok, load_in_4bit=use_4bit)
|
|
|
|
| 268 |
except Exception as e:
|
| 269 |
+
msg = (
|
| 270 |
+
f"Model load failed for '{model_repo}'. If gated/private, set HF_TOKEN in Space secrets.\n"
|
| 271 |
+
f"Error: {e}"
|
| 272 |
+
)
|
| 273 |
+
return "", "", msg, json.dumps({"labels": [], "tasks": []}, ensure_ascii=False, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
# 4) Truncate input to speed up
|
| 276 |
+
trunc_text = truncate_tokens(model.tokenizer, raw_text, max_input_tokens=max_input_tokens)
|
| 277 |
|
| 278 |
+
# 5) Build prompts
|
| 279 |
+
allowed_list_str = "\n".join(f"- {lab}" for lab in allowed)
|
| 280 |
+
user_prompt = USER_PROMPT_TEMPLATE.format(
|
| 281 |
+
transcript=trunc_text,
|
| 282 |
+
allowed_labels_list=allowed_list_str,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
)
|
| 284 |
|
| 285 |
+
# 6) Generate
|
| 286 |
+
t1 = _now_ms()
|
| 287 |
+
try:
|
| 288 |
+
model_out = model.generate(SYSTEM_PROMPT, user_prompt)
|
| 289 |
+
except Exception as e:
|
| 290 |
+
return "", "", f"Generation error: {e}", json.dumps({"labels": [], "tasks": []}, ensure_ascii=False, indent=2)
|
| 291 |
+
t2 = _now_ms()
|
| 292 |
+
|
| 293 |
+
# 7) Parse & filter strictly to allowed
|
| 294 |
+
parsed = robust_json_extract(model_out)
|
| 295 |
+
filtered = restrict_to_allowed(parsed, allowed)
|
| 296 |
+
|
| 297 |
+
# 8) Compose UI outputs
|
| 298 |
+
# Diagnostics
|
| 299 |
+
diag = [
|
| 300 |
+
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
|
| 301 |
+
f"Model: {model_repo}",
|
| 302 |
+
f"Tokens (input, approx): ≤ {max_input_tokens}",
|
| 303 |
+
f"Latency: load+prep {(t1 - t0)} ms, generate {(t2 - t1)} ms, total {(t2 - t0)} ms",
|
| 304 |
+
f"Allowed Labels Used (n={len(allowed)}): {', '.join(allowed)}",
|
| 305 |
+
]
|
| 306 |
+
diag_str = "\n".join(diag)
|
| 307 |
+
|
| 308 |
+
# Summary plain text
|
| 309 |
+
labs = filtered.get("labels", [])
|
| 310 |
+
tasks = filtered.get("tasks", [])
|
| 311 |
+
summ_lines = []
|
| 312 |
+
if labs:
|
| 313 |
+
summ_lines.append("Detected labels:\n - " + "\n - ".join(labs))
|
| 314 |
+
else:
|
| 315 |
+
summ_lines.append("Detected labels: (none)")
|
| 316 |
+
|
| 317 |
+
if tasks:
|
| 318 |
+
summ_lines.append("\nTasks:")
|
| 319 |
+
for t in tasks:
|
| 320 |
+
lab = t.get("label", "")
|
| 321 |
+
expl = t.get("explanation", "")
|
| 322 |
+
ev = t.get("evidence", "")
|
| 323 |
+
summ_lines.append(f"• [{lab}] {expl} | evidence: {ev[:140]}{'…' if len(ev)>140 else ''}")
|
| 324 |
+
else:
|
| 325 |
+
summ_lines.append("\nTasks: (none)")
|
| 326 |
+
|
| 327 |
+
summary = "\n".join(summ_lines)
|
| 328 |
+
|
| 329 |
+
# JSON pretty
|
| 330 |
+
json_str = json.dumps(filtered, ensure_ascii=False, indent=2)
|
| 331 |
+
|
| 332 |
+
# Raw model text (to help debug label empty issues)
|
| 333 |
+
raw_out = model_out.strip()
|
| 334 |
+
|
| 335 |
+
return summary, json_str, diag_str, raw_out
|
| 336 |
+
|
| 337 |
+
# =========================
|
| 338 |
+
# UI
|
| 339 |
+
# =========================
|
| 340 |
+
MODEL_CHOICES = [
|
| 341 |
+
"swiss-ai/Apertus-8B-Instruct-2509", # default
|
| 342 |
+
"meta-llama/Meta-Llama-3-8B-Instruct", # may be gated; handled in code
|
| 343 |
+
"mistralai/Mistral-7B-Instruct-v0.3", # widely available, strong baseline
|
| 344 |
+
]
|
| 345 |
|
| 346 |
+
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
|
| 347 |
+
gr.Markdown("# Talk2Task — Task Extraction Demo")
|
| 348 |
gr.Markdown(
|
| 349 |
+
"Drop a transcript file **or** paste text, choose a model, and get strict JSON back. "
|
| 350 |
+
"For best speed, keep inputs concise or lower the input token limit."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
with gr.Row():
|
| 354 |
+
with gr.Column(scale=3):
|
| 355 |
+
transcript_file = gr.File(
|
| 356 |
+
label="Drag & drop transcript (.txt / .md / .json)",
|
| 357 |
+
file_types=[".txt", ".md", ".json"],
|
| 358 |
+
type="filepath",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
)
|
| 360 |
+
transcript_text = gr.Textbox(
|
| 361 |
+
label="Or paste transcript here",
|
| 362 |
+
lines=14,
|
| 363 |
+
placeholder="Paste conversation transcript…",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
)
|
| 365 |
+
allowed_labels_text = gr.Textbox(
|
| 366 |
+
label="Allowed Labels (one per line) — leave empty to use defaults",
|
| 367 |
+
value="",
|
| 368 |
+
lines=8,
|
| 369 |
+
)
|
| 370 |
+
with gr.Column(scale=2):
|
| 371 |
+
model_repo = gr.Dropdown(
|
| 372 |
+
label="Model Repository",
|
| 373 |
+
choices=MODEL_CHOICES,
|
| 374 |
+
value=MODEL_CHOICES[0],
|
| 375 |
+
)
|
| 376 |
+
use_4bit = gr.Checkbox(
|
| 377 |
+
label="Use 4-bit quantization (recommended on GPU/T4)",
|
| 378 |
+
value=True,
|
| 379 |
+
)
|
| 380 |
+
max_input_tokens = gr.Slider(
|
| 381 |
+
label="Max input tokens (truncate from end for speed)",
|
| 382 |
+
minimum=1024,
|
| 383 |
+
maximum=8192,
|
| 384 |
+
step=512,
|
| 385 |
+
value=4096,
|
| 386 |
+
)
|
| 387 |
+
hf_token = gr.Textbox(
|
| 388 |
+
label="HF_TOKEN (only needed for gated/private models)",
|
| 389 |
+
type="password",
|
| 390 |
+
value=os.environ.get("HF_TOKEN", ""),
|
| 391 |
+
)
|
| 392 |
+
run_btn = gr.Button("Run Extraction", variant="primary")
|
| 393 |
|
| 394 |
+
with gr.Row():
|
| 395 |
+
with gr.Column():
|
| 396 |
+
summary_out = gr.Textbox(label="Summary", lines=10)
|
| 397 |
+
with gr.Column():
|
| 398 |
+
json_out = gr.Code(label="Strict JSON Output", language="json")
|
| 399 |
+
with gr.Row():
|
| 400 |
+
with gr.Column():
|
| 401 |
+
diag_out = gr.Textbox(label="Diagnostics & Timing", lines=8)
|
| 402 |
+
with gr.Column():
|
| 403 |
+
raw_out = gr.Textbox(label="Raw Model Output (debug)", lines=8)
|
| 404 |
+
|
| 405 |
+
run_btn.click(
|
| 406 |
+
fn=run_extraction,
|
| 407 |
+
inputs=[
|
| 408 |
+
transcript_text,
|
| 409 |
+
transcript_file,
|
| 410 |
+
allowed_labels_text,
|
| 411 |
+
model_repo,
|
| 412 |
+
use_4bit,
|
| 413 |
+
max_input_tokens,
|
| 414 |
+
hf_token,
|
| 415 |
+
],
|
| 416 |
+
outputs=[summary_out, json_out, diag_out, raw_out],
|
| 417 |
)
|
| 418 |
|
| 419 |
if __name__ == "__main__":
|