import gradio as gr import random from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import tensorflow as tf from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained( "nvidia/segformer-b5-finetuned-cityscapes-1024-1024" ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b5-finetuned-cityscapes-1024-1024" ) def ade_palette(): return [ [204, 87, 92], # road (Reddish) [112, 185, 212], # sidewalk (Blue) [196, 160, 122], # building (Brown) [106, 135, 242], # wall (Light Blue) [91, 192, 222], # fence (Turquoise) [255, 192, 203], # pole (Pink) [176, 224, 230], # traffic light (Light Blue) [222, 49, 99], # traffic sign (Red) [139, 69, 19], # vegetation (Brown) [255, 0, 0], # terrain (Red) [0, 0, 255], # sky (Blue) [255, 228, 181], # person (Peach) [128, 0, 0], # rider (Maroon) [0, 128, 0], # car (Green) [255, 99, 71], # truck (Tomato) [0, 255, 0], # bus (Lime) [128, 0, 128], # train (Purple) [255, 255, 0], # motorcycle (Yellow) [128, 0, 128] # bicycle (Purple) ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_left() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=27) return fig def sepia(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize( logits, input_img.size[::-1] ) # We reverse the shape of `image` because `image.size` returns width and height. seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros( (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 ) # height, width, 3 for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color # Show image + mask pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) fig = draw_plot(pred_img, seg) return fig demo = gr.Interface(fn=sepia, inputs=gr.Image(shape=(564,846)), outputs=['plot'], live=True, examples=["city1.jpg","city2.jpg","city3.jpg"], allow_flagging='never', title="City Image Segmentation Model", theme="huggingfacedark", description=["This model is a high-performance city image segmentation model based on the Segformer architecture provided by NVIDIA. Specifically, the "segformer-b5" model, trained on the Cityscapes dataset, excels at performing intricate segmentation on high-resolution images of 1024x1024 pixels. It accurately identifies various urban elements such as roads, buildings, pedestrians, providing visually rich segmentation results.", "This is a machine learning activity project at Kyunggi University."], ) demo.launch()