import os import gradio as gr from helper.examples.examples import DemoImages from helper.utils import TrafficDataHandler from src.htr_pipeline.gradio_backend import FastTrack, SingletonModelLoader model_loader = SingletonModelLoader() fast_track = FastTrack(model_loader) images_for_demo = DemoImages() terminate = False with gr.Blocks() as htr_tool_tab: with gr.Row(equal_height=True): with gr.Column(scale=2): with gr.Row(): fast_track_input_region_image = gr.Image( label="Image to run HTR on", type="numpy", tool="editor", elem_id="image_upload", height=395 ) with gr.Row(): with gr.Tab("HTRFLOW") as tab_output_and_setting_selector: with gr.Row(): stop_htr_button = gr.Button( value="Stop run", variant="stop", ) htr_pipeline_button = gr.Button( "Run ", variant="primary", visible=True, elem_id="run_pipeline_button", ) htr_pipeline_button_var = gr.State(value="htr_pipeline_button") htr_pipeline_button_api = gr.Button("Run pipeline", variant="primary", visible=False, scale=1) fast_file_downlod = gr.File( label="Download output file", visible=True, scale=1, height=100, elem_id="download_file" ) with gr.Tab("Visualize") as tab_image_viewer_selector: with gr.Row(): gr.Markdown("") # gr.Button( # value="Image viewer", # variant="secondary", # link="https://huggingface.co/spaces/Riksarkivet/Viewer_demo", # interactive=True, # ) run_image_visualizer_button = gr.Button( value="Visualize results", variant="primary", interactive=True ) selection_text_from_image_viewer = gr.Textbox( interactive=False, label="Text Selector", info="Select a line on Image Viewer to return text" ) with gr.Tab("Compare") as tab_model_compare_selector: with gr.Box(): gr.Markdown( """ **Work in progress** Compare different runs with uploaded Ground Truth and calculate CER. You will also be able to upload output format files """ ) calc_cer_button_fast = gr.Button("Calculate CER", variant="primary", visible=True) with gr.Column(scale=4): with gr.Box(): with gr.Row(visible=True) as output_and_setting_tab: with gr.Column(scale=2): fast_name_files_placeholder = gr.Markdown(visible=False) gr.Examples( examples=images_for_demo.examples_list, inputs=[fast_name_files_placeholder, fast_track_input_region_image], label="Example images", examples_per_page=5, ) gr.Markdown(" ") with gr.Column(scale=3): with gr.Group(): gr.Markdown("   ⚙️ Settings ") with gr.Row(): radio_file_input = gr.CheckboxGroup( choices=["Txt", "Page XML"], value=["Txt", "Page XML"], label="Output file extension", info="JSON and ALTO-XML will be added", scale=1, ) with gr.Row(): gr.Checkbox( value=True, label="Binarize image", info="Binarize image to reduce background noise", ) gr.Checkbox( value=True, label="Output prediction threshold", info="Output XML with prediction score", ) with gr.Accordion("Advanced settings", open=False): with gr.Group(): with gr.Row(): htr_tool_region_segment_model_dropdown = gr.Dropdown( choices=["Riksarkivet/rtmdet_region"], value="Riksarkivet/rtmdet_region", label="Region segmentation models", info="More models will be added", ) gr.Slider( minimum=0.4, maximum=1, value=0.5, step=0.05, label="P-threshold", info="""Filter confidence score for a prediction score to be considered""", ) with gr.Row(): htr_tool_line_segment_model_dropdown = gr.Dropdown( choices=["Riksarkivet/rtmdet_lines"], value="Riksarkivet/rtmdet_lines", label="Line segmentation models", info="More models will be added", ) gr.Slider( minimum=0.4, maximum=1, value=0.5, step=0.05, label="P-threshold", info="""Filter confidence score for a prediction score to be considered""", ) with gr.Row(): htr_tool_transcriber_model_dropdown = gr.Dropdown( choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"], value="Riksarkivet/satrn_htr", label="Text recognition models", info="More models will be added", ) gr.Slider( value=0.6, minimum=0.5, maximum=1, label="HTR threshold", info="Prediction score threshold for transcribed lines", scale=1, ) with gr.Row(): gr.Markdown("   More settings will be added") with gr.Row(visible=False) as image_viewer_tab: text_polygon_dict = gr.Variable() fast_track_output_image = gr.Image( label="Image Viewer", type="numpy", height=600, interactive=False ) with gr.Column(visible=False) as model_compare_selector: gr.Markdown("**Work in progress:**") with gr.Row(): gr.Radio( choices=["Compare Page XML", "Compare different runs"], value="Compare Page XML", info="Compare different runs from HTRFLOW or with external runs.", ) with gr.Row(): gr.UploadButton(label="Run A") gr.UploadButton(label="Run B") gr.UploadButton(label="Ground Truth") with gr.Row(): gr.HighlightedText( label="Text diff runs", combine_adjacent=True, show_legend=True, color_map={"+": "red", "-": "green"}, ) with gr.Row(): gr.HighlightedText( label="Text diff ground truth", combine_adjacent=True, show_legend=True, color_map={"+": "red", "-": "green"}, ) with gr.Row(): with gr.Column(scale=1): with gr.Row(equal_height=False): cer_output_fast = gr.Textbox(label="CER:") with gr.Column(scale=2): pass xml_rendered_placeholder_for_api = gr.Textbox(visible=False) htr_event_click_event = htr_pipeline_button.click( fast_track.segment_to_xml, inputs=[fast_track_input_region_image, radio_file_input], outputs=[fast_file_downlod, fast_file_downlod], ) htr_pipeline_button_api.click( fast_track.segment_to_xml_api, inputs=[fast_track_input_region_image], outputs=[xml_rendered_placeholder_for_api], api_name="predict", ) def dummy_update_htr_tool_transcriber_model_dropdown(htr_tool_transcriber_model_dropdown): return gr.update(value="Riksarkivet/satrn_htr") htr_tool_transcriber_model_dropdown.change( fn=dummy_update_htr_tool_transcriber_model_dropdown, inputs=htr_tool_transcriber_model_dropdown, outputs=htr_tool_transcriber_model_dropdown, ) def update_selected_tab_output_and_setting(): return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) def update_selected_tab_image_viewer(): return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) def update_selected_tab_model_compare(): return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) tab_output_and_setting_selector.select( fn=update_selected_tab_output_and_setting, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector], ) tab_image_viewer_selector.select( fn=update_selected_tab_image_viewer, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector] ) tab_model_compare_selector.select( fn=update_selected_tab_model_compare, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector] ) def stop_function(): from src.htr_pipeline.utils import pipeline_inferencer pipeline_inferencer.terminate = True gr.Info("The HTR execution was halted") stop_htr_button.click(fn=stop_function, inputs=None, outputs=None, cancels=[htr_event_click_event]) run_image_visualizer_button.click( fn=fast_track.visualize_image_viewer, inputs=fast_track_input_region_image, outputs=[fast_track_output_image, text_polygon_dict], ) fast_track_output_image.select( fast_track.get_text_from_coords, inputs=text_polygon_dict, outputs=selection_text_from_image_viewer ) SECRET_KEY = os.environ.get("AM_I_IN_A_DOCKER_CONTAINER", False) if SECRET_KEY: htr_pipeline_button.click(fn=TrafficDataHandler.store_metric_data, inputs=htr_pipeline_button_var)