#!/usr/bin/env python import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer HF_TOKEN = os.environ['HF_TOKEN'] DESCRIPTION = """# 🐐 GEITje-7B-chat 🐐 ## Een groot open Nederlands taalmodel [_Coming soon_](https://github.com/Rijgersberg/GEITje)""" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) if torch.cuda.is_available(): model_id = "Rijgersberg/GEITje-7B-chat" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.06, top_p: float = 0.95, top_k: int = 40, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["""Welk woord hoort er niet in dit rijtje thuis: "auto, vliegtuig, geitje, bus"?"""], ["Schrijf een nieuwsbericht voor De Speld over de inzet van een kudde geiten door het Nederlands Forensisch Instituut"], ["Wat zijn leuke dingen om te doen als ik een weekendje naar Friesland ga?"], ["Kan je naar de maan fietsen?"], ["Wat is het belang van open source taalmodellen?"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()