# app.py import torch from transformers import AutoImageProcessor, AutoModelForObjectDetection import cv2 from PIL import Image import numpy as np import gradio as gr import os # Import the Sort class from the local 'sort.py' file # Pastikan file 'sort.py' ada di direktori yang sama dengan app.py from sort import Sort # --- LOAD MODELS AND TRACKER ONCE (PENTING!) --- # Bagian ini hanya berjalan sekali saat aplikasi dimulai. print("Loading model and processor...") model_checkpoint = "facebook/detr-resnet-50" image_processor = AutoImageProcessor.from_pretrained(model_checkpoint) model = AutoModelForObjectDetection.from_pretrained( model_checkpoint, trust_remote_code=True ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) print("Model loaded successfully.") # --------------------------------------------------- def iou(boxA, boxB): # Fungsi untuk menghitung Intersection over Union (IoU) xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) iou_score = interArea / float(boxAArea + boxBArea - interArea) return iou_score # --- FUNGSI PEMROSESAN UTAMA --- def process_video(input_video_path): # Inisialisasi tracker dan penghitung untuk setiap video baru tracker = Sort(min_hits=3, iou_threshold=0.3) total_counts = {'person': 0, 'bicycle': 0, 'car': 0, 'motorcycle': 0} counted_ids = set() # Tentukan path output untuk video yang diproses output_video_path = "output.mp4" cap = cv2.VideoCapture(input_video_path) if not cap.isOpened(): raise gr.Error(f"Could not open video file.") fps = int(cap.get(cv2.CAP_PROP_FPS)) # --- OPTIMISASI: Atur resolusi baru yang lebih kecil --- new_width = 960 new_height = 540 # Gunakan codec 'mp4v' yang kompatibel dan resolusi baru out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (new_width, new_height)) frame_number = 0 while True: ret, frame = cap.read() if not ret: break frame_number += 1 # --- OPTIMISASI: Ubah ukuran setiap frame sebelum dideteksi --- frame = cv2.resize(frame, (new_width, new_height)) # 1. Deteksi objek dengan DETR pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) inputs = image_processor(images=pil_image, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) target_sizes = torch.tensor([pil_image.size[::-1]]) results = image_processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0] # 2. Format deteksi untuk SORT detections_for_sort = [] original_detections = [] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): label_name = model.config.id2label[label.item()] if label_name in total_counts: box_list = box.tolist() detections_for_sort.append([box_list[0], box_list[1], box_list[2], box_list[3], score.item()]) original_detections.append({'box': box_list, 'label': label_name}) # 3. Update tracker tracked_objects_raw = [] if len(detections_for_sort) > 0: tracked_objects_raw = tracker.update(np.array(detections_for_sort)) # 4. Logika Penghitungan & Visualisasi for obj in tracked_objects_raw: x1, y1, x2, y2, obj_id = [int(val) for val in obj] best_iou = 0 best_label = None for det in original_detections: iou_score = iou([x1, y1, x2, y2], det['box']) if iou_score > best_iou: best_iou = iou_score best_label = det['label'] # Hitung objek jika ID-nya baru if best_label and obj_id not in counted_ids: total_counts[best_label] += 1 counted_ids.add(obj_id) if best_label: cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f'{best_label} ID: {obj_id}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) # Tampilkan total hitungan kumulatif y_offset = 30 for obj_name, count in total_counts.items(): text = f'Total {obj_name.capitalize()}: {count}' cv2.putText(frame, text, (15, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 5) cv2.putText(frame, text, (15, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2) y_offset += 30 out.write(frame) cap.release() out.release() print(f"Video processing finished. Total frames: {frame_number}") return output_video_path # --- ANTARMUKA GRADIO (Dengan Layout Stabil) --- with gr.Blocks(css="footer {visibility: hidden}") as demo: gr.Markdown("

Real-Time Object Tracking & Counting with DETR and SORT

") gr.Markdown("Upload a video to see object detection and tracking in action. This demo uses Facebook's DETR model for detection and the SORT algorithm to assign unique IDs and count objects.") with gr.Row(): # Atur ukuran video yang tetap untuk mencegah layout "melompat" input_video = gr.Video(label="Input Video", width=640, height=360) output_video = gr.Video(label="Processed Video", width=640, height=360) submit_button = gr.Button("Submit", variant="primary") gr.Examples( examples=[['5402016-hd_1920_1080_30fps.mp4']], inputs=input_video, label="Click an example to run" ) submit_button.click( fn=process_video, inputs=input_video, outputs=output_video ) # Jalankan aplikasi demo.launch()