import gradio as gr import pandas as pd from huggingface_hub import HfApi # Initialize Hugging Face API api = HfApi() # Constants GGUF_TAG = "gguf" CHUNK_SIZE = 1000 # Clickable links function def clickable(x, which_one): if x in ["Not Found", "Unknown"]: return "Not Found" if which_one == "models": return f'{x}' else: return f'{x}' # Fetch models and return a DataFrame with clickable links def fetch_models(): models = api.list_models(filter=GGUF_TAG, full=True) data = [] for model in models: model_id = model.id if model.id else "Not Found" author = model.author if model.author else "Unknown" data.append({ "Model ID": model_id, "Author Name": author, "Downloads (30d)": model.downloads or 0, "Likes": model.likes or 0, "Created At": model.created_at.isoformat() if model.created_at else "N/A", "Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A", }) df = pd.DataFrame(data) # Apply clickable links to models and authors df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models")) df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models")) return df # Prepare authors DataFrame def prepare_authors_df(models_df): authors_df = models_df.copy() # Extract the author name from the href in the clickable link authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"') grouped = authors_df.groupby("Clean Author Name").agg( Models_Count=("Model ID", "count"), Total_Downloads=("Downloads (30d)", "sum"), Total_Likes=("Likes", "sum") ).reset_index() grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True) grouped["Author Name"] = grouped["Author Name"].apply(lambda x: clickable(x, "models")) return grouped.sort_values(by="Models_Count", ascending=False) all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False) authors_df = prepare_authors_df(all_models_df) # Calculate totals total_models_count = len(all_models_df) total_downloads = all_models_df["Downloads (30d)"].sum() total_likes = all_models_df["Likes"].sum() def apply_model_filters(search_query, min_downloads, min_likes): df = all_models_df.copy() # Extract visible text for filtering purposes: visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0] visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0] # Search filter if search_query.strip(): mask = (visible_model_id.str.contains(search_query, case=False, na=False)) | \ (visible_author_name.str.contains(search_query, case=False, na=False)) df = df[mask] # Minimum downloads filter if min_downloads is not None and min_downloads > 0: df = df[df["Downloads (30d)"] >= min_downloads] # Minimum likes filter if min_likes is not None and min_likes > 0: df = df[df["Likes"] >= min_likes] return df def filter_models(search_query, min_downloads, min_likes): filtered = apply_model_filters(search_query, min_downloads, min_likes) return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered def update_model_table(start_idx, filtered_df): new_end = start_idx + CHUNK_SIZE combined_df = filtered_df.iloc[:new_end].copy() return combined_df, new_end def apply_author_filters(search_query, min_author_downloads, min_author_likes): df = authors_df.copy() # Extract visible text for author filtering: visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0] # Search filter for authors if search_query.strip(): mask = visible_author_name.str.contains(search_query, case=False, na=False) df = df[mask] # Minimum total downloads filter if min_author_downloads is not None and min_author_downloads > 0: df = df[df["Total_Downloads"] >= min_author_downloads] # Minimum total likes filter if min_author_likes is not None and min_author_likes > 0: df = df[df["Total_Likes"] >= min_author_likes] return df with gr.Blocks() as demo: gr.Markdown(f""" # 🚀GGUF Tracker🚀 Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face. Stats refresh every hour, giving you the latest numbers. By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov), [🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find. """) gr.Markdown(f""" # GGUF Models and Authors Leaderboard **Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes} """) with gr.Tabs(): with gr.TabItem("Models"): with gr.Row(): search_query = gr.Textbox(label="Search (by Model ID or Author Name)") min_downloads = gr.Number(label="Min Downloads (30d)", value=0) min_likes = gr.Number(label="Min Likes", value=0) filter_button = gr.Button("Apply Filters") model_table = gr.DataFrame( value=all_models_df.iloc[:CHUNK_SIZE], interactive=False, label="GGUF Models (Click column headers to sort)", wrap=True, datatype=["markdown", "markdown", "number", "number", "str", "str"] ) load_more_button = gr.Button("Load More Models") # States start_idx = gr.State(value=CHUNK_SIZE) filtered_df_state = gr.State(value=all_models_df) # holds the currently filtered df filter_button.click( fn=filter_models, inputs=[search_query, min_downloads, min_likes], outputs=[model_table, start_idx, filtered_df_state] ) load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx]) with gr.TabItem("Authors"): with gr.Row(): author_search_query = gr.Textbox(label="Search by Author Name") min_author_downloads = gr.Number(label="Min Total Downloads", value=0) min_author_likes = gr.Number(label="Min Total Likes", value=0) author_filter_button = gr.Button("Apply Filters") author_table = gr.DataFrame( value=authors_df, interactive=False, label="Authors (Click column headers to sort)", wrap=True, datatype=["markdown", "number", "number", "number"] ) def filter_authors(author_search_query, min_author_downloads, min_author_likes): filtered_authors = apply_author_filters(author_search_query, min_author_downloads, min_author_likes) return filtered_authors author_filter_button.click( fn=filter_authors, inputs=[author_search_query, min_author_downloads, min_author_likes], outputs=author_table ) demo.launch()