# This is Multi-reference timbre encoder import torch from torch import nn from torch.nn.utils import remove_weight_norm, weight_norm from module.attentions import MultiHeadAttention class MRTE(nn.Module): def __init__(self, content_enc_channels=192, hidden_size=512, out_channels=192, kernel_size=5, n_heads=4, ge_layer = 2 ): super(MRTE, self).__init__() self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads) self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1) self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1) self.c_post = nn.Conv1d(hidden_size,out_channels, 1) def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None): if(ge==None):ge=0 attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1) ssl_enc = self.c_pre(ssl_enc * ssl_mask) text_enc = self.text_pre(text * text_mask) if test != None: if test == 0: x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge elif test == 1: x = ssl_enc + ge elif test ==2: x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge else: raise ValueError("test should be 0,1,2") else: x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge x = self.c_post(x * ssl_mask) return x class SpeakerEncoder(torch.nn.Module): def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256): super(SpeakerEncoder, self).__init__() self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) self.linear = nn.Linear(model_hidden_size, model_embedding_size) self.relu = nn.ReLU() def forward(self, mels): self.lstm.flatten_parameters() _, (hidden, _) = self.lstm(mels.transpose(-1, -2)) embeds_raw = self.relu(self.linear(hidden[-1])) return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) class MELEncoder(nn.Module): def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) def forward(self, x): # print(x.shape,x_lengths.shape) x = self.pre(x) x = self.enc(x) x = self.proj(x) return x class WN(torch.nn.Module): def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers): super(WN, self).__init__() assert(kernel_size % 2 == 1) self.hidden_channels =hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, dilation=dilation, padding=padding) in_layer = weight_norm(in_layer) self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, x): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) for i in range(self.n_layers): x_in = self.in_layers[i](x) acts = fused_add_tanh_sigmoid_multiply( x_in, n_channels_tensor) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:,:self.hidden_channels,:] x = (x + res_acts) output = output + res_skip_acts[:,self.hidden_channels:,:] else: output = output + res_skip_acts return output def remove_weight_norm(self): for l in self.in_layers: remove_weight_norm(l) for l in self.res_skip_layers: remove_weight_norm(l) @torch.jit.script def fused_add_tanh_sigmoid_multiply(input, n_channels): n_channels_int = n_channels[0] t_act = torch.tanh(input[:, :n_channels_int, :]) s_act = torch.sigmoid(input[:, n_channels_int:, :]) acts = t_act * s_act return acts if __name__ == '__main__': content_enc = torch.randn(3,192,100) content_mask = torch.ones(3,1,100) ref_mel = torch.randn(3,128,30) ref_mask = torch.ones(3,1,30) model = MRTE() out = model(content_enc,content_mask,ref_mel,ref_mask) print(out.shape)