Spaces:
Sleeping
Sleeping
Delete Colony_Analyzer_AI_zstack2.py
Browse files- Colony_Analyzer_AI_zstack2.py +0 -385
Colony_Analyzer_AI_zstack2.py
DELETED
|
@@ -1,385 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
# -*- coding: utf-8 -*-
|
| 3 |
-
"""
|
| 4 |
-
Created on Thu Mar 20 14:23:27 2025
|
| 5 |
-
|
| 6 |
-
@author: mattc
|
| 7 |
-
"""
|
| 8 |
-
|
| 9 |
-
import os
|
| 10 |
-
import cv2
|
| 11 |
-
#this is the huggingface version
|
| 12 |
-
# path = '/home/mattc/Documents/ColonyAssaySegformer/'
|
| 13 |
-
# file_list = os.listdir(path)
|
| 14 |
-
# file_list = [x for x in file_list if (x[-4::]==".tif" or x[-5::]==".tiff")]
|
| 15 |
-
def cut_img(path, x):
|
| 16 |
-
img_map = {}
|
| 17 |
-
img = cv2.imread(path + x)
|
| 18 |
-
name = x.split(".")[0]
|
| 19 |
-
i_num = img.shape[0]/512
|
| 20 |
-
j_num = img.shape[1]/512
|
| 21 |
-
count = 1
|
| 22 |
-
for i in range(int(i_num)):
|
| 23 |
-
for j in range(int(j_num)):
|
| 24 |
-
img2 = img[(512*i):(512*(i+1)), (512*j):(512*(j+1))]
|
| 25 |
-
cv2.imwrite(path+name+'_part'+str(count)+'.tif', img2)
|
| 26 |
-
img_map[count] = path+name+'_part'+str(count)+'.tif'
|
| 27 |
-
count +=1
|
| 28 |
-
return(img_map)
|
| 29 |
-
|
| 30 |
-
import numpy as np
|
| 31 |
-
|
| 32 |
-
def stitch(img_map):
|
| 33 |
-
for x in img_map:
|
| 34 |
-
temp = img_map[x]
|
| 35 |
-
img_map[x] = cv2.imread(temp)
|
| 36 |
-
if (img_map[x] is None):
|
| 37 |
-
img_map[x] = cv2.imread(temp, cv2.IMREAD_UNCHANGED)
|
| 38 |
-
os.remove(temp)
|
| 39 |
-
rows = [
|
| 40 |
-
np.hstack([img_map[1], img_map[2], img_map[3], img_map[4]]), # First row (images 0 to 3)
|
| 41 |
-
np.hstack([img_map[5], img_map[6], img_map[7], img_map[8]]), # Second row (images 4 to 7)
|
| 42 |
-
np.hstack([img_map[9], img_map[10], img_map[11], img_map[12]]) # Third row (images 8 to 11)
|
| 43 |
-
]
|
| 44 |
-
|
| 45 |
-
# Stack rows vertically
|
| 46 |
-
return(np.vstack(rows))
|
| 47 |
-
|
| 48 |
-
#img_map = cut_img(path, file_list[0])
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
from PIL import Image
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
import matplotlib.pyplot as plt
|
| 56 |
-
|
| 57 |
-
def visualize_segmentation(mask, image=0):
|
| 58 |
-
plt.figure(figsize=(10, 5))
|
| 59 |
-
|
| 60 |
-
if(not np.isscalar(image)):
|
| 61 |
-
# Show original image if it is entered
|
| 62 |
-
plt.subplot(1, 2, 1)
|
| 63 |
-
plt.imshow(image)
|
| 64 |
-
plt.title("Original Image")
|
| 65 |
-
plt.axis("off")
|
| 66 |
-
|
| 67 |
-
# Show segmentation mask
|
| 68 |
-
plt.subplot(1, 2, 2)
|
| 69 |
-
plt.imshow(mask, cmap="gray") # Show as grayscale
|
| 70 |
-
plt.title("Segmentation Mask")
|
| 71 |
-
plt.axis("off")
|
| 72 |
-
|
| 73 |
-
plt.show()
|
| 74 |
-
|
| 75 |
-
import torch
|
| 76 |
-
from transformers import SegformerForSemanticSegmentation
|
| 77 |
-
# Load fine-tuned model
|
| 78 |
-
model = SegformerForSemanticSegmentation.from_pretrained("ReyaLabColumbia/Segformer_Colony_Counter") # Adjust path
|
| 79 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 80 |
-
model.to(device)
|
| 81 |
-
model.eval() # Set to evaluation mode
|
| 82 |
-
|
| 83 |
-
# Load image processor
|
| 84 |
-
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
| 85 |
-
image_processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b3-finetuned-cityscapes-1024-1024")
|
| 86 |
-
|
| 87 |
-
def preprocess_image(image_path):
|
| 88 |
-
image = Image.open(image_path).convert("RGB") # Open and convert to RGB
|
| 89 |
-
inputs = image_processor(image, return_tensors="pt") # Preprocess for model
|
| 90 |
-
return image, inputs["pixel_values"]
|
| 91 |
-
|
| 92 |
-
def postprocess_mask(logits):
|
| 93 |
-
mask = torch.argmax(logits, dim=1) # Take argmax across the class dimension
|
| 94 |
-
return mask.squeeze().cpu().numpy() # Convert to NumPy array
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def eval_img(image_path):
|
| 98 |
-
# Load and preprocess image
|
| 99 |
-
image, pixel_values = preprocess_image(image_path)
|
| 100 |
-
pixel_values = pixel_values.to(device)
|
| 101 |
-
with torch.no_grad(): # No gradient calculation for inference
|
| 102 |
-
outputs = model(pixel_values=pixel_values) # Run model
|
| 103 |
-
logits = outputs.logits
|
| 104 |
-
# Convert logits to segmentation mask
|
| 105 |
-
segmentation_mask = postprocess_mask(logits)
|
| 106 |
-
#visualize_segmentation(segmentation_mask,image)
|
| 107 |
-
segmentation_mask = cv2.resize(segmentation_mask, (512, 512), interpolation=cv2.INTER_LINEAR_EXACT)
|
| 108 |
-
return(segmentation_mask)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
# for x in img_map:
|
| 112 |
-
# mask = eval_img(img_map[x])
|
| 113 |
-
# cv2.imwrite(img_map[x], mask)
|
| 114 |
-
# del mask,x
|
| 115 |
-
# p = stitch(img_map)
|
| 116 |
-
# visualize_segmentation(p)
|
| 117 |
-
|
| 118 |
-
# num_colony = np.count_nonzero(p == 1) # Counts number of 1s
|
| 119 |
-
# num_necrosis = np.count_nonzero(p == 2)
|
| 120 |
-
|
| 121 |
-
# num_necrosis/num_colony
|
| 122 |
-
|
| 123 |
-
def find_colonies(mask, size_cutoff, circ_cutoff):
|
| 124 |
-
binary_mask = np.where(mask == 1, 255, 0).astype(np.uint8)
|
| 125 |
-
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 126 |
-
contoursf = []
|
| 127 |
-
areas = []
|
| 128 |
-
for x in contours:
|
| 129 |
-
area = cv2.contourArea(x)
|
| 130 |
-
if (area < size_cutoff):
|
| 131 |
-
continue
|
| 132 |
-
perimeter = cv2.arcLength(x, True)
|
| 133 |
-
|
| 134 |
-
# Avoid division by zero
|
| 135 |
-
if perimeter == 0:
|
| 136 |
-
continue
|
| 137 |
-
|
| 138 |
-
# Calculate circularity
|
| 139 |
-
circularity = (4 * np.pi * area) / (perimeter ** 2)
|
| 140 |
-
if circularity >= circ_cutoff:
|
| 141 |
-
contoursf.append(x)
|
| 142 |
-
areas.append(area)
|
| 143 |
-
return(contoursf, areas)
|
| 144 |
-
|
| 145 |
-
def find_necrosis(mask):
|
| 146 |
-
binary_mask = np.where(mask == 2, 255, 0).astype(np.uint8)
|
| 147 |
-
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 148 |
-
return(contours)
|
| 149 |
-
|
| 150 |
-
# contour_image = np.zeros_like(p)
|
| 151 |
-
# contours = find_necrosis(p)
|
| 152 |
-
# cv2.drawContours(contour_image, contours, -1, (255), 2)
|
| 153 |
-
# visualize_segmentation(contour_image)
|
| 154 |
-
import pandas as pd
|
| 155 |
-
def compute_centroid(contour):
|
| 156 |
-
M = cv2.moments(contour)
|
| 157 |
-
if M["m00"] == 0: # Avoid division by zero
|
| 158 |
-
return None
|
| 159 |
-
cx = int(M["m10"] / M["m00"])
|
| 160 |
-
cy = int(M["m01"] / M["m00"])
|
| 161 |
-
return (cx, cy)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def contours_overlap_using_mask(contour1, contour2, image_shape=(1536, 2048)):
|
| 165 |
-
"""Check if two contours overlap using a bitwise AND mask."""
|
| 166 |
-
import numpy as np
|
| 167 |
-
import cv2
|
| 168 |
-
mask1 = np.zeros(image_shape, dtype=np.uint8)
|
| 169 |
-
mask2 = np.zeros(image_shape, dtype=np.uint8)
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
# Draw each contour as a white shape on its respective mask
|
| 173 |
-
cv2.drawContours(mask1, [contour1], -1, 255, thickness=cv2.FILLED)
|
| 174 |
-
cv2.drawContours(mask2, [contour2], -1, 255, thickness=cv2.FILLED)
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
# Compute bitwise AND to find overlapping regions
|
| 178 |
-
overlap = cv2.bitwise_and(mask1, mask2)
|
| 179 |
-
|
| 180 |
-
return np.any(overlap)
|
| 181 |
-
|
| 182 |
-
def analyze_colonies(mask, size_cutoff, circ_cutoff):
|
| 183 |
-
colonies,areas = find_colonies(mask, size_cutoff, circ_cutoff)
|
| 184 |
-
necrosis = find_necrosis(mask)
|
| 185 |
-
|
| 186 |
-
data = []
|
| 187 |
-
|
| 188 |
-
for x in range(len(colonies)):
|
| 189 |
-
colony = colonies[x]
|
| 190 |
-
colony_area = areas[x]
|
| 191 |
-
centroid = compute_centroid(colony)
|
| 192 |
-
|
| 193 |
-
# Check if any necrosis contour is inside the colony
|
| 194 |
-
necrosis_area = 0
|
| 195 |
-
nec_list =[]
|
| 196 |
-
for nec in necrosis:
|
| 197 |
-
# Check if the first point of the necrosis contour is inside the colony
|
| 198 |
-
if contours_overlap_using_mask(colony, nec):
|
| 199 |
-
nec_area = cv2.contourArea(nec)
|
| 200 |
-
necrosis_area += nec_area
|
| 201 |
-
nec_list.append(nec)
|
| 202 |
-
|
| 203 |
-
data.append({
|
| 204 |
-
"colony_area": colony_area,
|
| 205 |
-
"necrosis_area": necrosis_area,
|
| 206 |
-
"centroid": centroid,
|
| 207 |
-
"percent_necrosis": necrosis_area/colony_area,
|
| 208 |
-
"contour": colony,
|
| 209 |
-
"nec_contours": nec_list
|
| 210 |
-
})
|
| 211 |
-
|
| 212 |
-
# Convert results to a DataFrame
|
| 213 |
-
df = pd.DataFrame(data)
|
| 214 |
-
df.index = range(1,len(df.index)+1)
|
| 215 |
-
return(df)
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def contour_overlap(contour1, contour2, centroid1, centroid2, area1, area2, centroid_thresh=30, area_thresh = .4, img_shape = (1536, 2048)):
|
| 219 |
-
"""
|
| 220 |
-
Determines the overlap between two contours.
|
| 221 |
-
Returns:
|
| 222 |
-
0: No overlap
|
| 223 |
-
1: Overlap but does not meet strict conditions
|
| 224 |
-
2: Overlap >= 80% of the larger contour and centroids are close
|
| 225 |
-
"""
|
| 226 |
-
# Create blank images
|
| 227 |
-
img1 = np.zeros(img_shape, dtype=np.uint8)
|
| 228 |
-
img2 = np.zeros(img_shape, dtype=np.uint8)
|
| 229 |
-
|
| 230 |
-
# Draw filled contours
|
| 231 |
-
cv2.drawContours(img1, [contour1], -1, 255, thickness=cv2.FILLED)
|
| 232 |
-
cv2.drawContours(img2, [contour2], -1, 255, thickness=cv2.FILLED)
|
| 233 |
-
|
| 234 |
-
# Compute overlap
|
| 235 |
-
intersection = cv2.bitwise_and(img1, img2)
|
| 236 |
-
intersection_area = np.count_nonzero(intersection)
|
| 237 |
-
|
| 238 |
-
if intersection_area == 0:
|
| 239 |
-
return 0 # No overlap
|
| 240 |
-
|
| 241 |
-
# Compute centroid distance
|
| 242 |
-
centroid_distance = float(np.sqrt(abs(centroid1[0]-centroid2[0])**2 + abs(centroid1[1]-centroid2[1])**2))
|
| 243 |
-
# Check percentage overlap relative to the larger contour
|
| 244 |
-
overlap_ratio = intersection_area/max(area1, area2)
|
| 245 |
-
if overlap_ratio >= area_thresh and centroid_distance <= centroid_thresh:
|
| 246 |
-
if area1 > area2:
|
| 247 |
-
return(2)
|
| 248 |
-
else:
|
| 249 |
-
return(3)
|
| 250 |
-
else:
|
| 251 |
-
return 1 # Some overlap but not meeting strict criteria
|
| 252 |
-
|
| 253 |
-
def compare_frames(frame1, frame2):
|
| 254 |
-
for i in range(1, len(frame1)+1):
|
| 255 |
-
if frame1.loc[i,"exclude"] == True:
|
| 256 |
-
continue
|
| 257 |
-
for j in range(1, len(frame2)+1):
|
| 258 |
-
if frame2.loc[j,"exclude"] == True:
|
| 259 |
-
continue
|
| 260 |
-
temp = contour_overlap(frame1.loc[i, "contour"], frame2.loc[j, "contour"], frame1.loc[i, "centroid"], frame2.loc[j, "centroid"], frame1.loc[i, "colony_area"], frame2.loc[j, "colony_area"])
|
| 261 |
-
if temp ==2:
|
| 262 |
-
frame2.loc[j,"exclude"] = True
|
| 263 |
-
elif temp ==3:
|
| 264 |
-
frame1.loc[i, "exclude"] = True
|
| 265 |
-
break
|
| 266 |
-
frame1 = frame1[frame1["exclude"]==False]
|
| 267 |
-
frame2 = frame2[frame2["exclude"]==False]
|
| 268 |
-
df = pd.concat([frame1, frame2], axis=0)
|
| 269 |
-
df.index = range(1,len(df.index)+1)
|
| 270 |
-
return(df)
|
| 271 |
-
|
| 272 |
-
def main(args):
|
| 273 |
-
path = args[0]
|
| 274 |
-
files = args[1]
|
| 275 |
-
min_size = args[2]
|
| 276 |
-
min_circ = args[3]
|
| 277 |
-
colonies = {}
|
| 278 |
-
for x in files:
|
| 279 |
-
img_map = cut_img(path, x)
|
| 280 |
-
for z in img_map:
|
| 281 |
-
mask = eval_img(img_map[z])
|
| 282 |
-
cv2.imwrite(img_map[z], mask)
|
| 283 |
-
del mask,z
|
| 284 |
-
p = stitch(img_map)
|
| 285 |
-
frame = analyze_colonies(p, min_size, min_circ)
|
| 286 |
-
frame["source"] = x
|
| 287 |
-
frame["exclude"] = False
|
| 288 |
-
if isinstance(colonies, dict):
|
| 289 |
-
colonies = frame
|
| 290 |
-
else:
|
| 291 |
-
colonies = compare_frames(frame, colonies)
|
| 292 |
-
counts = {}
|
| 293 |
-
for x in files:
|
| 294 |
-
counts[x] = list(colonies["source"]).count(x)
|
| 295 |
-
best = [x, counts[x]]
|
| 296 |
-
del x
|
| 297 |
-
for x in counts:
|
| 298 |
-
if counts[x] > best[1]:
|
| 299 |
-
best[0] = x
|
| 300 |
-
best[1] = counts[x]
|
| 301 |
-
del x, counts
|
| 302 |
-
best = best[0]
|
| 303 |
-
img = cv2.imread(path + best)
|
| 304 |
-
for x in files:
|
| 305 |
-
if x == best:
|
| 306 |
-
continue
|
| 307 |
-
mask = np.zeros_like(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
|
| 308 |
-
contours = colonies[colonies["source"]==x]
|
| 309 |
-
contours = list(contours["contour"])
|
| 310 |
-
cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED)
|
| 311 |
-
# Extract all ROIs from the source image at once
|
| 312 |
-
src_image = cv2.imread(path +x)
|
| 313 |
-
roi = cv2.bitwise_and(src_image, src_image, mask=mask)
|
| 314 |
-
# Paste the extracted regions onto the destination image
|
| 315 |
-
np.copyto(img, roi, where=(mask[..., None] == 255))
|
| 316 |
-
try:
|
| 317 |
-
del x, mask, src_image, roi, best, contours
|
| 318 |
-
except:
|
| 319 |
-
pass
|
| 320 |
-
|
| 321 |
-
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
| 322 |
-
colonies = colonies.sort_values(by=["colony_area"], ascending=False)
|
| 323 |
-
colonies = colonies[colonies["colony_area"]>= min_size]
|
| 324 |
-
colonies.index = range(1,len(colonies.index)+1)
|
| 325 |
-
#nearby is a boolean list of whether a colony has overlapping colonies. If so, labelling positions change
|
| 326 |
-
nearby = [False]*len(colonies)
|
| 327 |
-
areas = list(colonies["colony_area"])
|
| 328 |
-
for i in range(len(colonies)):
|
| 329 |
-
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
|
| 330 |
-
cv2.drawContours(img, list(colonies['nec_contours'])[i], -1, (0, 0, 255), 2)
|
| 331 |
-
coords = list(list(colonies["centroid"])[i])
|
| 332 |
-
if coords[0] > 1950:
|
| 333 |
-
#if a colony is too close to the right edge, makes the label move to left
|
| 334 |
-
coords[0] = 1950
|
| 335 |
-
for j in range(len(colonies)):
|
| 336 |
-
if j == i:
|
| 337 |
-
continue
|
| 338 |
-
coords2 = list(list(colonies["centroid"])[j])
|
| 339 |
-
if ((abs(coords[0] - coords2[0]) + abs(coords[1] - coords2[1])) <= 40):
|
| 340 |
-
nearby[i] = True
|
| 341 |
-
break
|
| 342 |
-
if nearby[i] ==True:
|
| 343 |
-
#If the colony has nearby colonies, this adjusts the labels so they are smaller and are positioned based on the approximate radius of the colony
|
| 344 |
-
# a random number is generated, and based on that, the label is put at the top or bottom, left or right
|
| 345 |
-
radius= int(np.sqrt(areas[i]/3.1415)*.9)
|
| 346 |
-
n = np.random.random()
|
| 347 |
-
if n >.75:
|
| 348 |
-
new_x = min(coords[0] + radius, 2000)
|
| 349 |
-
new_y = min(coords[1] + radius, 1480)
|
| 350 |
-
elif n >.5:
|
| 351 |
-
new_x = min(coords[0] + radius, 2000)
|
| 352 |
-
new_y = max(coords[1] - radius, 50)
|
| 353 |
-
elif n >.25:
|
| 354 |
-
new_x = max(coords[0] - radius, 0)
|
| 355 |
-
new_y = min(coords[1] + radius, 1480)
|
| 356 |
-
else:
|
| 357 |
-
new_x = max(coords[0] - radius, 0)
|
| 358 |
-
new_y = max(coords[1] - radius, 50)
|
| 359 |
-
cv2.putText(img, str(colonies.index[i]), (new_x,new_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
| 360 |
-
del n, radius, new_x, new_y
|
| 361 |
-
else:
|
| 362 |
-
cv2.putText(img, str(colonies.index[i]), coords, cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 2)
|
| 363 |
-
del nearby, areas
|
| 364 |
-
colonies = colonies.drop('contour', axis=1)
|
| 365 |
-
colonies = colonies.drop('nec_contours', axis=1)
|
| 366 |
-
colonies = colonies.drop('exclude', axis=1)
|
| 367 |
-
img = cv2.copyMakeBorder(img,top=10, bottom=0,left=10,right=0, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
| 368 |
-
|
| 369 |
-
colonies.insert(loc=0, column="Colony Number", value=[str(x) for x in range(1, len(colonies)+1)])
|
| 370 |
-
total_area_dark = sum(colonies['necrosis_area'])
|
| 371 |
-
total_area_light = sum(colonies['colony_area'])
|
| 372 |
-
ratio = total_area_dark/(abs(total_area_light)+1)
|
| 373 |
-
|
| 374 |
-
colonies.loc[len(colonies)+1] = ["Total", total_area_light, total_area_dark, None, ratio, None]
|
| 375 |
-
Parameters = pd.DataFrame({"Minimum colony size in pixels":[min_size], "Minimum colony circularity":[min_circ]})
|
| 376 |
-
with pd.ExcelWriter(path+"Group_analysis_results.xlsx") as writer:
|
| 377 |
-
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 378 |
-
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
|
| 379 |
-
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 380 |
-
cv2.putText(caption, "Total area necrotic: "+str(total_area_dark)+ ", Total area living: "+str(total_area_light)+", Ratio: "+str(ratio), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
cv2.imwrite(path+'Group_analysis_results.png', np.vstack((img, caption)))
|
| 385 |
-
return(np.vstack((img, caption)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|