# Copyright (c) 2022 Horizon Robotics. (authors: Binbin Zhang) # 2022 Chengdong Liang (liangchengdong@mail.nwpu.edu.cn) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gradio as gr import torch from wenet.cli.model import load_model def process_cat_embs(cat_embs): device = "cpu" cat_embs = torch.tensor( [float(c) for c in cat_embs.split(',')]).to(device) return cat_embs def download_rev_models(): # from huggingface_hub import hf_hub_download # import joblib # REPO_ID = "Revai/reginald" # FILENAME = "sklearn_model.joblib" # model = joblib.load( # hf_hub_download(repo_id=REPO_ID, filename=FILENAME) # ) model_path = "/Users/natalie/NERD-2941/reginald/10.jit.zip" units_path = "/Users/natalie/NERD-2941/reginald/tk.units.txt" audio_path = "/Users/natalie/NERD-2941/rev-wenet/runtime/web/fdhc0_si1559.wav" cat_embs = "1,0" device = "cpu" cat_embs = process_cat_embs model = load_model(model_path, units_path) return model model = download_rev_models() def recognition(audio, style=0): if audio is None: return "Input Error! Please enter one audio!" # NOTE: model supports 16k sample_rate cat_embs = ','.join([str(s) for s in (1-style, style)]) cat_embs = process_cat_embs(cat_embs) ans = model.transcribe(audio, cat_embs = cat_embs) if ans is None: return "ERROR! No text output! Please try again!" txt = ans['text'] return txt # input inputs = [ gr.inputs.Audio(source="microphone", type="filepath", label='Input audio'), gr.Slider(0, 1, value=0, label="Style", info="Choose between verbatim and NV"), ] output = gr.outputs.Textbox(label="Output Text") text = "Reginald Demo" # description description = ( "This is a speech recognition demo that supports verbatim and non-verbatim transcription. Try recording an audio with disfluencies (ex: \'uh\', \'um\') and testing both transcription styles." # noqa ) article = ( "

" "Github: Learn more about Rev" # noqa "

") interface = gr.Interface( fn=recognition, inputs=inputs, outputs=output, title=text, description=description, article=article, theme='huggingface', ) interface.launch(enable_queue=True)