from keras.models import load_model import cv2 import json import gradio as gr model_data=load_model("SkinCancerModel.h5",compile=True) f=open("data.json") data=json.load(f) cancer_class_list=list(data) def Canccer_Prediction(image): image=cv2.resize(image,(180,180))/255.0 result=model_data.predict(image.reshape(1,180,180,3)).argmax() return cancer_class_list[result],data[cancer_class_list[result]]['description'],data[cancer_class_list[result]]['symptoms'],data[cancer_class_list[result]]['causes'],data[cancer_class_list[result]]['treatement-1'],data[cancer_class_list[result]]['treatement-2'] interface=gr.Interface(fn=Canccer_Prediction, inputs="image", outputs=[gr.components.Textbox(label="Cancer Name"),gr.components.Textbox(label="Description"),gr.components.Textbox(label="Symptoms"),gr.components.Textbox(label="Causes"),gr.components.Textbox(label="Treatment 1"),gr.components.Textbox(label="Treatment 2")], enablue_queu=True) interface.launch(debug=True)