from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import create_model import numpy as np import os opt = TrainOptions().parse() opt.nThreads = 1 opt.batchSize = 1 opt.serial_batches = True opt.no_flip = True opt.instance_feat = True opt.continue_train = True name = 'features' save_path = os.path.join(opt.checkpoints_dir, opt.name) ############ Initialize ######### data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) model = create_model(opt) ########### Encode features ########### reencode = True if reencode: features = {} for label in range(opt.label_nc): features[label] = np.zeros((0, opt.feat_num+1)) for i, data in enumerate(dataset): feat = model.module.encode_features(data['image'], data['inst']) for label in range(opt.label_nc): features[label] = np.append(features[label], feat[label], axis=0) print('%d / %d images' % (i+1, dataset_size)) save_name = os.path.join(save_path, name + '.npy') np.save(save_name, features) ############## Clustering ########### n_clusters = opt.n_clusters load_name = os.path.join(save_path, name + '.npy') features = np.load(load_name).item() from sklearn.cluster import KMeans centers = {} for label in range(opt.label_nc): feat = features[label] feat = feat[feat[:,-1] > 0.5, :-1] if feat.shape[0]: n_clusters = min(feat.shape[0], opt.n_clusters) kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(feat) centers[label] = kmeans.cluster_centers_ save_name = os.path.join(save_path, name + '_clustered_%03d.npy' % opt.n_clusters) np.save(save_name, centers) print('saving to %s' % save_name)