import torch import torch.nn as nn import functools from torch.autograd import Variable import numpy as np ############################################################################### # Functions ############################################################################### def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm2d') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def get_norm_layer(norm_type='instance'): if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm='instance', gpu_ids=[]): norm_layer = get_norm_layer(norm_type=norm) if netG == 'global': netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) elif netG == 'local': netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, n_local_enhancers, n_blocks_local, norm_layer) elif netG == 'encoder': netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer) else: raise('generator not implemented!') print(netG) if len(gpu_ids) > 0: assert(torch.cuda.is_available()) netG.cuda(gpu_ids[0]) netG.apply(weights_init) return netG def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]): norm_layer = get_norm_layer(norm_type=norm) netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat) print(netD) if len(gpu_ids) > 0: assert(torch.cuda.is_available()) netD.cuda(gpu_ids[0]) netD.apply(weights_init) return netD def print_network(net): if isinstance(net, list): net = net[0] num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print('Total number of parameters: %d' % num_params) ############################################################################## # Losses ############################################################################## class GANLoss(nn.Module): def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_var = None self.fake_label_var = None self.Tensor = tensor if use_lsgan: self.loss = nn.MSELoss() else: self.loss = nn.BCELoss() def get_target_tensor(self, input, target_is_real): target_tensor = None if target_is_real: create_label = ((self.real_label_var is None) or (self.real_label_var.numel() != input.numel())) if create_label: real_tensor = self.Tensor(input.size()).fill_(self.real_label) self.real_label_var = Variable(real_tensor, requires_grad=False) target_tensor = self.real_label_var else: create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())) if create_label: fake_tensor = self.Tensor(input.size()).fill_(self.fake_label) self.fake_label_var = Variable(fake_tensor, requires_grad=False) target_tensor = self.fake_label_var return target_tensor def __call__(self, input, target_is_real): if isinstance(input[0], list): loss = 0 for input_i in input: pred = input_i[-1] target_tensor = self.get_target_tensor(pred, target_is_real) loss += self.loss(pred, target_tensor) return loss else: target_tensor = self.get_target_tensor(input[-1], target_is_real) return self.loss(input[-1], target_tensor) class VGGLoss(nn.Module): def __init__(self, gpu_ids): super(VGGLoss, self).__init__() self.vgg = Vgg19().cuda() self.criterion = nn.L1Loss() self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss ############################################################################## # Generator ############################################################################## class LocalEnhancer(nn.Module): def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'): super(LocalEnhancer, self).__init__() self.n_local_enhancers = n_local_enhancers ###### global generator model ##### ngf_global = ngf * (2**n_local_enhancers) model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model model_global = [model_global[i] for i in range(len(model_global)-3)] # get rid of final convolution layers self.model = nn.Sequential(*model_global) ###### local enhancer layers ##### for n in range(1, n_local_enhancers+1): ### downsample ngf_global = ngf * (2**(n_local_enhancers-n)) model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), norm_layer(ngf_global), nn.ReLU(True), nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf_global * 2), nn.ReLU(True)] ### residual blocks model_upsample = [] for i in range(n_blocks_local): model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)] ### upsample model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(ngf_global), nn.ReLU(True)] ### final convolution if n == n_local_enhancers: model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample)) setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample)) self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) def forward(self, input): ### create input pyramid input_downsampled = [input] for i in range(self.n_local_enhancers): input_downsampled.append(self.downsample(input_downsampled[-1])) ### output at coarest level output_prev = self.model(input_downsampled[-1]) ### build up one layer at a time for n_local_enhancers in range(1, self.n_local_enhancers+1): model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1') model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2') input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers] output_prev = model_upsample(model_downsample(input_i) + output_prev) return output_prev class GlobalGenerator(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, padding_type='reflect'): assert(n_blocks >= 0) super(GlobalGenerator, self).__init__() activation = nn.ReLU(True) model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] ### downsample for i in range(n_downsampling): mult = 2**i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), activation] ### resnet blocks mult = 2**n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] ### upsample for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(int(ngf * mult / 2)), activation] model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): return self.model(input) # Define a resnet block class ResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim), activation] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class Encoder(nn.Module): def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d): super(Encoder, self).__init__() self.output_nc = output_nc model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), nn.ReLU(True)] ### downsample for i in range(n_downsampling): mult = 2**i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), nn.ReLU(True)] ### upsample for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input, inst): outputs = self.model(input) # instance-wise average pooling outputs_mean = outputs.clone() inst_list = np.unique(inst.cpu().numpy().astype(int)) for i in inst_list: for b in range(input.size()[0]): indices = (inst[b:b+1] == int(i)).nonzero() # n x 4 for j in range(self.output_nc): output_ins = outputs[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] mean_feat = torch.mean(output_ins).expand_as(output_ins) outputs_mean[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] = mean_feat return outputs_mean class MultiscaleDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, num_D=3, getIntermFeat=False): super(MultiscaleDiscriminator, self).__init__() self.num_D = num_D self.n_layers = n_layers self.getIntermFeat = getIntermFeat for i in range(num_D): netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat) if getIntermFeat: for j in range(n_layers+2): setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j))) else: setattr(self, 'layer'+str(i), netD.model) self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) def singleD_forward(self, model, input): if self.getIntermFeat: result = [input] for i in range(len(model)): result.append(model[i](result[-1])) return result[1:] else: return [model(input)] def forward(self, input): num_D = self.num_D result = [] input_downsampled = input for i in range(num_D): if self.getIntermFeat: model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)] else: model = getattr(self, 'layer'+str(num_D-1-i)) result.append(self.singleD_forward(model, input_downsampled)) if i != (num_D-1): input_downsampled = self.downsample(input_downsampled) return result # Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False): super(NLayerDiscriminator, self).__init__() self.getIntermFeat = getIntermFeat self.n_layers = n_layers kw = 4 padw = int(np.ceil((kw-1.0)/2)) sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]] nf = ndf for n in range(1, n_layers): nf_prev = nf nf = min(nf * 2, 512) sequence += [[ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), norm_layer(nf), nn.LeakyReLU(0.2, True) ]] nf_prev = nf nf = min(nf * 2, 512) sequence += [[ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), norm_layer(nf), nn.LeakyReLU(0.2, True) ]] sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] if use_sigmoid: sequence += [[nn.Sigmoid()]] if getIntermFeat: for n in range(len(sequence)): setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) else: sequence_stream = [] for n in range(len(sequence)): sequence_stream += sequence[n] self.model = nn.Sequential(*sequence_stream) def forward(self, input): if self.getIntermFeat: res = [input] for n in range(self.n_layers+2): model = getattr(self, 'model'+str(n)) res.append(model(res[-1])) return res[1:] else: return self.model(input) from torchvision import models class Vgg19(torch.nn.Module): def __init__(self, requires_grad=False): super(Vgg19, self).__init__() vgg_pretrained_features = models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out