import os import torch import sys class BaseModel(torch.nn.Module): def name(self): return 'BaseModel' def initialize(self, opt): self.opt = opt self.gpu_ids = opt.gpu_ids self.isTrain = opt.isTrain self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) def set_input(self, input): self.input = input def forward(self): pass # used in test time, no backprop def test(self): pass def get_image_paths(self): pass def optimize_parameters(self): pass def get_current_visuals(self): return self.input def get_current_errors(self): return {} def save(self, label): pass # helper saving function that can be used by subclasses def save_network(self, network, network_label, epoch_label, gpu_ids): save_filename = '%s_net_%s.pth' % (epoch_label, network_label) save_path = os.path.join(self.save_dir, save_filename) torch.save(network.cpu().state_dict(), save_path) if len(gpu_ids) and torch.cuda.is_available(): network.cuda() # helper loading function that can be used by subclasses def load_network(self, network, network_label, epoch_label, save_dir=''): save_filename = '%s_net_%s.pth' % (epoch_label, network_label) if not save_dir: save_dir = self.save_dir save_path = os.path.join(save_dir, save_filename) if not os.path.isfile(save_path): print('%s not exists yet!' % save_path) if network_label == 'G': raise('Generator must exist!') else: #network.load_state_dict(torch.load(save_path)) try: network.load_state_dict(torch.load(save_path)) except: pretrained_dict = torch.load(save_path) model_dict = network.state_dict() try: pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} network.load_state_dict(pretrained_dict) if self.opt.verbose: print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label) except: print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label) for k, v in pretrained_dict.items(): if v.size() == model_dict[k].size(): model_dict[k] = v if sys.version_info >= (3,0): not_initialized = set() else: from sets import Set not_initialized = Set() for k, v in model_dict.items(): if k not in pretrained_dict or v.size() != pretrained_dict[k].size(): not_initialized.add(k.split('.')[0]) print(sorted(not_initialized)) network.load_state_dict(model_dict) def update_learning_rate(): pass