# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import torch from torch_utils import misc from torch_utils import persistence from torch_utils.ops import conv2d_resample from torch_utils.ops import upfirdn2d from torch_utils.ops import bias_act from torch_utils.ops import fma from .networks import FullyConnectedLayer, Conv2dLayer, ToRGBLayer, MappingNetwork from util.utilgan import hw_scales, fix_size, multimask @misc.profiled_function def modulated_conv2d( x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. styles, # Modulation coefficients of shape [batch_size, in_channels]. # !!! custom # latmask, # mask for split-frame latents blending countHW = [1,1], # frame split count by height,width splitfine = 0., # frame split edge fineness (float from 0+) size = None, # custom size scale_type = None, # scaling way: fit, centr, side, pad, padside noise = None, # Optional noise tensor to add to the output activations. up = 1, # Integer upsampling factor. down = 1, # Integer downsampling factor. padding = 0, # Padding with respect to the upsampled image. resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). demodulate = True, # Apply weight demodulation? flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d). fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation? ): batch_size = x.shape[0] out_channels, in_channels, kh, kw = weight.shape misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk] misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW] misc.assert_shape(styles, [batch_size, in_channels]) # [NI] # Pre-normalize inputs to avoid FP16 overflow. if x.dtype == torch.float16 and demodulate: weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I # Calculate per-sample weights and demodulation coefficients. w = None dcoefs = None if demodulate or fused_modconv: w = weight.unsqueeze(0) # [NOIkk] w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk] if demodulate: dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO] if demodulate and fused_modconv: w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk] # Execute by scaling the activations before and after the convolution. if not fused_modconv: x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight) # !!! custom size & multi latent blending if size is not None and up==2: x = fix_size(x, size, scale_type) # x = multimask(x, size, latmask, countHW, splitfine) if demodulate and noise is not None: x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)) elif demodulate: x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) elif noise is not None: x = x.add_(noise.to(x.dtype)) return x # Execute as one fused op using grouped convolution. with misc.suppress_tracer_warnings(): # this value will be treated as a constant batch_size = int(batch_size) misc.assert_shape(x, [batch_size, in_channels, None, None]) x = x.reshape(1, -1, *x.shape[2:]) w = w.reshape(-1, in_channels, kh, kw) x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight) x = x.reshape(batch_size, -1, *x.shape[2:]) # !!! custom size & multi latent blending if size is not None and up==2: x = fix_size(x, size, scale_type) # x = multimask(x, size, latmask, countHW, splitfine) if noise is not None: x = x.add_(noise) return x #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisLayer(torch.nn.Module): def __init__(self, in_channels, # Number of input channels. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this layer. # !!! custom countHW = [1,1], # frame split count by height,width splitfine = 0., # frame split edge fineness (float from 0+) size = None, # custom size scale_type = None, # scaling way: fit, centr, side, pad, padside init_res = [4,4], # Initial (minimal) resolution for progressive training kernel_size = 3, # Convolution kernel size. up = 1, # Integer upsampling factor. use_noise = True, # Enable noise input? activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. channels_last = False, # Use channels_last format for the weights? ): super().__init__() self.resolution = resolution self.countHW = countHW # !!! custom self.splitfine = splitfine # !!! custom self.size = size # !!! custom self.scale_type = scale_type # !!! custom self.init_res = init_res # !!! custom self.up = up self.use_noise = use_noise self.activation = activation self.conv_clamp = conv_clamp self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.padding = kernel_size // 2 self.act_gain = bias_act.activation_funcs[activation].def_gain self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) memory_format = torch.channels_last if channels_last else torch.contiguous_format self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)) if use_noise: # !!! custom self.register_buffer('noise_const', torch.randn([resolution * init_res[0]//4, resolution * init_res[1]//4])) # self.register_buffer('noise_const', torch.randn([resolution, resolution])) self.noise_strength = torch.nn.Parameter(torch.zeros([])) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) # !!! custom # def forward(self, x, latmask, w, noise_mode='random', fused_modconv=True, gain=1): def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1): assert noise_mode in ['random', 'const', 'none'] in_resolution = self.resolution // self.up # misc.assert_shape(x, [None, self.weight.shape[1], in_resolution, in_resolution]) styles = self.affine(w) noise = None if self.use_noise and noise_mode == 'random': # !!! custom sz = self.size if self.up==2 and self.size is not None else x.shape[2:] noise = torch.randn([x.shape[0], 1, *sz], device=x.device) * self.noise_strength # noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength if self.use_noise and noise_mode == 'const': noise = self.noise_const * self.noise_strength # !!! custom noise size noise_size = self.size if self.up==2 and self.size is not None and self.resolution > 4 else x.shape[2:] noise = fix_size(noise.unsqueeze(0).unsqueeze(0), noise_size, scale_type=self.scale_type)[0][0] # print(x.shape, noise.shape, self.size, self.up) flip_weight = (self.up == 1) # slightly faster # x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, # latmask=latmask, countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom # padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv) x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp) return x #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisBlock(torch.nn.Module): def __init__(self, in_channels, # Number of input channels, 0 = first block. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this block. img_channels, # Number of output color channels. is_last, # Is this the last block? # !!! custom size = None, # custom size scale_type = None, # scaling way: fit, centr, side, pad, padside init_res = [4,4], # Initial (minimal) resolution for progressive training architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. use_fp16 = False, # Use FP16 for this block? fp16_channels_last = False, # Use channels-last memory format with FP16? **layer_kwargs, # Arguments for SynthesisLayer. ): assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.in_channels = in_channels self.w_dim = w_dim self.resolution = resolution self.size = size # !!! custom self.scale_type = scale_type # !!! custom self.init_res = init_res # !!! custom self.img_channels = img_channels self.is_last = is_last self.architecture = architecture self.use_fp16 = use_fp16 self.channels_last = (use_fp16 and fp16_channels_last) self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.num_conv = 0 self.num_torgb = 0 if in_channels == 0: # !!! custom self.const = torch.nn.Parameter(torch.randn([out_channels, *init_res])) # self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution])) if in_channels != 0: self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2, init_res=init_res, scale_type=scale_type, size=size, # !!! custom resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) self.num_conv += 1 self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution, init_res=init_res, scale_type=scale_type, size=size, # !!! custom conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) self.num_conv += 1 if is_last or architecture == 'skip': self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim, conv_clamp=conv_clamp, channels_last=self.channels_last) self.num_torgb += 1 if in_channels != 0 and architecture == 'resnet': self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2, resample_filter=resample_filter, channels_last=self.channels_last) # !!! custom # def forward(self, x, img, ws, latmask, dconst, force_fp32=False, fused_modconv=None, **layer_kwargs): def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, **layer_kwargs): misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) w_iter = iter(ws.unbind(dim=1)) dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: with misc.suppress_tracer_warnings(): # this value will be treated as a constant fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) # Input. if self.in_channels == 0: x = self.const.to(dtype=dtype, memory_format=memory_format) x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) # !!! custom const size if 'side' in self.scale_type and 'symm' in self.scale_type: # looks better const_size = self.init_res if self.size is None else self.size x = fix_size(x, const_size, self.scale_type) # distortion technique from Aydao # x += dconst else: # misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: # !!! custom latmask # x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) # !!! custom latmask # x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) # x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y.add_(x) else: # !!! custom latmask # x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) # x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) # ToRGB. if img is not None: # !!! custom img size # misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) img = fix_size(img, self.size, scale_type=self.scale_type) if self.is_last or self.architecture == 'skip': y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img.add_(y) if img is not None else y assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisNetwork(torch.nn.Module): def __init__(self, w_dim, # Intermediate latent (W) dimensionality. img_resolution, # Output image resolution. img_channels, # Number of color channels. # !!! custom init_res = [4,4], # Initial (minimal) resolution for progressive training size = None, # Output size scale_type = None, # scaling way: fit, centr, side, pad, padside channel_base = 32768, # Overall multiplier for the number of channels. channel_max = 512, # Maximum number of channels in any layer. num_fp16_res = 0, # Use FP16 for the N highest resolutions. verbose = False, # **block_kwargs, # Arguments for SynthesisBlock. ): assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0 super().__init__() self.w_dim = w_dim self.img_resolution = img_resolution self.res_log2 = int(np.log2(img_resolution)) self.img_channels = img_channels self.fmap_base = channel_base self.block_resolutions = [2 ** i for i in range(2, self.res_log2 + 1)] channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions} fp16_resolution = max(2 ** (self.res_log2 + 1 - num_fp16_res), 8) # calculate intermediate layers sizes for arbitrary output resolution custom_res = (img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4) if size is None: size = custom_res if init_res != [4,4] and verbose: print(' .. init res', init_res, size) keep_first_layers = 2 if scale_type == 'fit' else None hws = hw_scales(size, custom_res, self.res_log2 - 2, keep_first_layers, verbose) if verbose: print(hws, '..', custom_res, self.res_log2-1) self.num_ws = 0 for i, res in enumerate(self.block_resolutions): in_channels = channels_dict[res // 2] if res > 4 else 0 out_channels = channels_dict[res] use_fp16 = (res >= fp16_resolution) is_last = (res == self.img_resolution) block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res, init_res=init_res, scale_type=scale_type, size=hws[i], # !!! custom img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs) self.num_ws += block.num_conv if is_last: self.num_ws += block.num_torgb setattr(self, f'b{res}', block) # def forward(self, ws, latmask, dconst, **block_kwargs): def forward(self, ws, **block_kwargs): block_ws = [] with torch.autograd.profiler.record_function('split_ws'): misc.assert_shape(ws, [None, self.num_ws, self.w_dim]) ws = ws.to(torch.float32) w_idx = 0 for res in self.block_resolutions: block = getattr(self, f'b{res}') block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) w_idx += block.num_conv x = img = None for res, cur_ws in zip(self.block_resolutions, block_ws): block = getattr(self, f'b{res}') # !!! custom # x, img = block(x, img, cur_ws, latmask, dconst, **block_kwargs) x, img = block(x, img, cur_ws, **block_kwargs) return img #---------------------------------------------------------------------------- @persistence.persistent_class class Generator(torch.nn.Module): def __init__(self, z_dim, # Input latent (Z) dimensionality. c_dim, # Conditioning label (C) dimensionality. w_dim, # Intermediate latent (W) dimensionality. img_resolution, # Output resolution. img_channels, # Number of output color channels. # !!! custom init_res = [4,4], # Initial (minimal) resolution for progressive training mapping_kwargs = {}, # Arguments for MappingNetwork. synthesis_kwargs = {}, # Arguments for SynthesisNetwork. ): super().__init__() self.z_dim = z_dim self.c_dim = c_dim self.w_dim = w_dim self.img_resolution = img_resolution self.init_res = init_res # !!! custom self.img_channels = img_channels # !!! custom self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, init_res=init_res, img_channels=img_channels, **synthesis_kwargs) # !!! custom self.num_ws = self.synthesis.num_ws self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs) # !!! custom self.output_shape = [1, img_channels, img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4] # !!! custom # def forward(self, z, c, latmask, dconst, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): # def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff) # img = self.synthesis(ws, latmask, dconst, **synthesis_kwargs) # !!! custom img = self.synthesis(ws, **synthesis_kwargs) # !!! custom return img