import datetime import os import numpy as np import wandb from utils import common class WBLogger: def __init__(self, opts): wandb_run_name = os.path.basename(opts.exp_dir) wandb.init(project="pixel2style2pixel", config=vars(opts), name=wandb_run_name) @staticmethod def log_best_model(): wandb.run.summary["best-model-save-time"] = datetime.datetime.now() @staticmethod def log(prefix, metrics_dict, global_step): log_dict = {f'{prefix}_{key}': value for key, value in metrics_dict.items()} log_dict["global_step"] = global_step wandb.log(log_dict) @staticmethod def log_dataset_wandb(dataset, dataset_name, n_images=16): idxs = np.random.choice(a=range(len(dataset)), size=n_images, replace=False) data = [wandb.Image(dataset.source_paths[idx]) for idx in idxs] wandb.log({f"{dataset_name} Data Samples": data}) @staticmethod def log_images_to_wandb(x, y, y_hat, id_logs, prefix, step, opts): im_data = [] column_names = ["Source", "Target", "Output"] if id_logs is not None: column_names.append("ID Diff Output to Target") for i in range(len(x)): cur_im_data = [ wandb.Image(common.log_input_image(x[i], opts)), wandb.Image(common.tensor2im(y[i])), wandb.Image(common.tensor2im(y_hat[i])), ] if id_logs is not None: cur_im_data.append(id_logs[i]["diff_target"]) im_data.append(cur_im_data) outputs_table = wandb.Table(data=im_data, columns=column_names) wandb.log({f"{prefix.title()} Step {step} Output Samples": outputs_table})