import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import fitz import os model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier") tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") def extract_text_from_pdf(file_path): text = '' with fitz.open(file_path) as pdf_document: for page_number in range(pdf_document.page_count): page = pdf_document.load_page(page_number) text += page.get_text() return text def predict_class(text): try: max_length = 4096 truncated_text = text[:max_length] inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = torch.argmax(logits, dim=1).item() return predicted_class except Exception as e: st.error(f"Error during prediction: {e}") return None uploaded_files_dir = "uploaded_files" os.makedirs(uploaded_files_dir, exist_ok=True) st.title("Paper Citation Classifier") option = st.radio("Select input type:", ("Text", "PDF")) if option == "Text": text_input = st.text_area("Enter your text here:") if st.button("Predict") and text_input.strip(): predicted_class = predict_class(text_input) if predicted_class is not None: class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"] st.text(f"Predicted Class: {class_labels[predicted_class]}") elif option == "PDF": uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) if uploaded_file is not None: file_path = os.path.join(uploaded_files_dir, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) st.success("File uploaded successfully.") st.text(f"File Path: {file_path}") file_text = extract_text_from_pdf(file_path) st.text("Extracted Text:") st.text(file_text) if st.button("Predict"): predicted_class = predict_class(file_text) if predicted_class is not None: class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"] st.text(f"Predicted Class: {class_labels[predicted_class]}")