import cv2 import numpy as np from typing import Dict, List import colorsys from pytoshop import layers from pytoshop.enums import BlendMode from pytoshop.core import PsdFile def decode_to_mask(seg: np.ndarray[np.bool_]) -> np.ndarray[np.uint8]: return seg.astype(np.uint8) * 255 def generate_random_color(): h = np.random.randint(0, 360) s = np.random.randint(70, 100) / 100 v = np.random.randint(70, 100) / 100 r, g, b = colorsys.hsv_to_rgb(h/360, s, v) return int(r * 255), int(g * 255), int(b * 255) def create_base_layer(image: np.ndarray): rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) return [rgba_image] def create_mask_layers( image: np.ndarray, masks: List ): layer_list = [] sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True) for info in sorted_masks: rle = info['segmentation'] mask = decode_to_mask(rle) rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask) layer_list.append(rgba_image) return layer_list def create_mask_gallery( image: np.ndarray, masks: List ): mask_array_list = [] label_list = [] sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True) for index, info in enumerate(sorted_masks): rle = info['segmentation'] mask = decode_to_mask(rle) rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask) mask_array_list.append(rgba_image) label_list.append(f'Part {index}') return [[img, label] for img, label in zip(mask_array_list, label_list)] def create_mask_combined_images( image: np.ndarray, masks: List ): final_result = np.zeros_like(image) used_colors = set() for info in masks: rle = info['segmentation'] mask = decode_to_mask(rle) while True: color = generate_random_color() if color not in used_colors: used_colors.add(color) break colored_mask = np.zeros_like(image) colored_mask[mask > 0] = color blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0) final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result) combined_image = np.where(final_result != 0, final_result, image) hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV) hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255) enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return [enhanced, "Masked"] def insert_psd_layer( psd: PsdFile, image_data: np.ndarray, layer_name: str, blending_mode: BlendMode ): channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)] layer_record = layers.LayerRecord( channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]}, top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1], blend_mode=blending_mode, name=layer_name, opacity=255, ) psd.layer_and_mask_info.layer_info.layer_records.append(layer_record) return psd def save_psd( input_image_data: np.ndarray, layer_data: List, layer_names: List, blending_modes: List, output_path: str ): psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1]) psd_file.layer_and_mask_info.layer_info.layer_records.clear() for index, layer in enumerate(layer_data): psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index]) with open(output_path, 'wb') as output_file: psd_file.write(output_file) def save_psd_with_masks( image: np.ndarray, masks: List, output_path: str ): original_layer = create_base_layer(image) mask_layers = create_mask_layers(image, masks) names = [f'Part {i}' for i in range(len(mask_layers))] modes = [BlendMode.normal] * (len(mask_layers)+1) save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)