from PIL import Image import base64 from io import BytesIO import os import re import tempfile import wave import requests import gradio as gr import time import shutil import json import nltk import mysql.connector import fnmatch # audio related code is not included based on Arun's input # audio package import speech_recognition as sr from pydub import AudioSegment from pydub.playback import play # SMTP code is not included since HFSpaces doesn't support it # email library import smtplib, ssl from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email import encoders # langchain from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableSequence, RunnableLambda from langchain_openai import ChatOpenAI from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.utilities import SQLDatabase from langchain.agents import create_tool_calling_agent, AgentExecutor, Tool from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.tools import StructuredTool #from langchain.pydantic_v1 import BaseModel, Field from pydantic import BaseModel, Field from PyPDF2 import PdfReader from nltk.tokenize import sent_tokenize from datetime import datetime from sqlalchemy import create_engine from sqlalchemy.sql import text import openai # pandas import pandas as pd from pandasai.llm.openai import OpenAI from pandasai import SmartDataframe from dotenv import load_dotenv # Load environment variables load_dotenv() # langfuse analytics from langfuse.callback import CallbackHandler # Inventory API data table from tabulate import tabulate #forcefully stop the agent execution import concurrent.futures import threading # mailjet_rest to send email from mailjet_rest import Client import base64 #Variables Initialization agent_executor = None vector_store1 = None texts1 = None excel_dataframe = None file_extension = None #This is to define the summary of the runtime tool. This summary will be updated in prompt template and description of the new tool run_time_tool_summary="" # Define global variables for managing the thread and current_event executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) current_event = None stop_event = threading.Event() # LangFuse API keys and host settings os.environ["LANGFUSE_PUBLIC_KEY"] = os.getenv("LANGFUSE_PUBLIC_KEY") os.environ["LANGFUSE_SECRET_KEY"] = os.getenv("LANGFUSE_SECRET_KEY") os.environ["LANGFUSE_HOST"] = os.getenv("LANGFUSE_HOST") DB_USER = 'u852023448_redmindgpt' DB_PASSWORD = 'redmindGpt@123' DB_HOST = '217.21.88.10' DB_NAME = 'u852023448_redmindgpt' langfuse_handler = CallbackHandler() langfuse_handler.auth_check() # Optional: Checks if the authentication is successful nltk.download('punkt') open_api_key_token = os.getenv("OPENAI_API_KEY") os.environ['OPENAI_API_KEY'] = open_api_key_token pdf_path = "Inbound.pdf" db_uri = os.getenv("POSTGRESQL_CONNECTION") # Database setup db = SQLDatabase.from_uri(db_uri) user_email = "" warehouse_name = "" warehouse_id = "" # Today's date to be populated in inventory API inventory_date = datetime.today().strftime('%Y-%m-%d') apis = [ # fetch warehouse ID { "url": "http://193.203.162.39:8383/nxt-wms/userWarehouse/fetchWarehouseForUserId?", "params": {"query": warehouse_name, "userId": 164} }, # Stock summary based on warehouse id { "url": "http://193.203.162.39:8383/nxt-wms/transactionHistory/stockSummary?", "params": {"branchId": 343, "onDate": inventory_date, "warehouseId": warehouse_id} } ] # LLM setup llm = ChatOpenAI(model="gpt-4o-mini", max_tokens=300, temperature=0.1) llm_chart = OpenAI() def get_schema(_): schema_info = db.get_table_info() # This should be a string of your SQL schema return schema_info def generate_sql_query(question): schema = get_schema(None) template_query_generation = """ Schema: {schema} Question: {question} Provide a SQL query to answer the above question using the exact field names and table names specified in the schema. SQL Query (Please provide only the SQL statement without explanations or formatting): """ prompt_query_generation = ChatPromptTemplate.from_template(template_query_generation) schema_and_question = RunnableLambda(lambda _: {'schema': schema, 'question': question}) sql_chain = RunnableSequence( schema_and_question, prompt_query_generation, llm.bind(stop=["SQL Query End"]), # Adjust the stop sequence to your need StrOutputParser() ) sql_query = sql_chain.invoke({}) sql_query = sql_chain.invoke({}, config={"callbacks": [langfuse_handler]}) return sql_query.strip() def run_query(query): # Clean the query by removing markdown symbols and trimming whitespace clean_query = query.replace("```sql", "").replace("```", "").strip() print(f"Executing SQL Query: {clean_query}") try: result = db.run(clean_query) return result except Exception as e: print(f"Error executing query: {e}") return None # Define the database query tool # The function that uses the above models # Define the function that will handle the database query def database_tool(question): sql_query = generate_sql_query(question) return run_query(sql_query) def get_ASN_data(question): base_url = os.getenv("ASN_API_URL") print(f"base_url{base_url}") complete_url = f"{base_url}branchMaster.id=343&transactionUid={question}&userId=164&transactionType=ASN" try: response = requests.get(complete_url) print(f"complete_url{complete_url}") print(f"response{response}") data = response.json() response.raise_for_status() if 'result' in data and 'content' in data['result'] and data['result']['content']: content = data['result']['content'][0] trnHeaderAsn = content['trnHeaderAsn'] party = content['party'][0] transactionUid = trnHeaderAsn['transactionUid'] customerOrderNo = trnHeaderAsn.get('customerOrderNo', 'N/A') orderDate = trnHeaderAsn.get('orderDate', 'N/A') customerInvoiceNo = trnHeaderAsn.get('customerInvoiceNo', 'N/A') invoiceDate = trnHeaderAsn.get('invoiceDate', 'N/A') expectedReceivingDate = trnHeaderAsn['expectedReceivingDate'] transactionStatus = trnHeaderAsn['transactionStatus'] shipper_code = party['shipper']['code'] if party['shipper'] else 'N/A' shipper_name = party['shipper']['name'] if party['shipper'] else 'N/A' data = [ ["Transaction UID", transactionUid], ["Customer Order No", customerOrderNo], ["Order Date", orderDate], ["Customer Invoice No", customerInvoiceNo], ["Invoice Date", invoiceDate], ["Expected Receiving Date", expectedReceivingDate], ["Transaction Status", transactionStatus], ["Shipper Code", shipper_code], ["Shipper Name", shipper_name] ] return f"The ASN details of {question} is {data}." else: return "ASN Details are not found. Please contact system administrator." except requests.exceptions.HTTPError as http_err: print(f"HTTP error occurred: {http_err}") except Exception as err: print(f"An error occurred: {err}") def load_and_split_pdf(pdf_path): reader = PdfReader(pdf_path) text = '' for page in reader.pages: text += page.extract_text() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50) texts = text_splitter.split_text(text) return texts def create_vector_store(texts): embeddings = OpenAIEmbeddings() vector_store = FAISS.from_texts(texts, embeddings) return vector_store def query_vector_store(vector_store, query, config=None): if config: print("Config passed:", config) docs = vector_store.similarity_search(query, k=5) print(f"Vector store return: {docs}") return docs def summarize_document(docs): summarized_docs = [] for doc in docs: if isinstance(doc, list): doc_content = ' '.join([d.page_content for d in doc]) else: doc_content = doc.page_content sentences = sent_tokenize(doc_content) if len(sentences) > 5: summarized_content = ' '.join(sentences[:5]) else: summarized_content = doc_content summarized_docs.append(summarized_content) return '\n\n'.join(summarized_docs) texts = load_and_split_pdf(pdf_path) vector_store = create_vector_store(texts) def document_data_tool_runtime(question): print(f"Document data runtime tool enter: {question} with {vector_store1}") query_response = query_vector_store(vector_store1, question, config={"callbacks": [langfuse_handler]}) return query_response def document_data_tool(question): print(f"Document data tool enter: {question}") # query_string = question['tags'][0] if 'tags' in question and question['tags'] else "" query_response = query_vector_store(vector_store, question, config={"callbacks": [langfuse_handler]}) # summarized_response = summarize_document(query_response) return query_response # mailjet API since SMTP is not supported HF spaces def send_email_with_attachment_mailjet(recipient_email, subject, body, attach_img_base64=None): api_key = os.getenv("MAILJET_API_KEY") api_secret = os.getenv("MAILJET_API_SECRET") # Initialize the Mailjet client mailjet = Client(auth=(api_key, api_secret), version='v3.1') # Define the email details with an attachment data = { 'Messages': [ { "From": { "Email": "lakshmi.vairamani@redmindtechnologies.com", "Name": "Redmind Technologies" }, "To": [ { "Email": recipient_email, "Name": "" } ], "Subject": subject, "TextPart": body, "CustomID": "AppGettingStartedTest", "Attachments": [ { "ContentType": "image/png", # Replace with the correct MIME type of your image "Filename": "inventory_report.png", # Name of the image as it will appear in the email "Base64Content": attach_img_base64 # Base64-encoded image content } ] } ] } # Send the email result = mailjet.send.create(data=data) # Check if the email was sent successfully if result.status_code == 200: print("Email sent successfully with attachment!") else: print(f"Failed to send email. Status code: {result.status_code}") print(result.json()) #smtp lib def send_email_with_attachment(recipient_email, subject, body, attachment_path): try: sender_email = os.getenv("EMAIL_SENDER") sender_password = os.getenv("EMAIL_PASSWORD") # Create a multipart message msg = MIMEMultipart() msg['From'] = sender_email msg['To'] = recipient_email msg['Subject'] = subject # Attach the body with the msg instance msg.attach(MIMEText(body, 'plain')) # Open the file to be sent attachment = open(attachment_path, "rb") # print("Attached the image") # Instance of MIMEBase and named as p part = MIMEBase('application', 'octet-stream') # To change the payload into encoded form part.set_payload((attachment).read()) # Encode into base64 encoders.encode_base64(part) part.add_header('Content-Disposition', f"attachment; filename= {attachment_path}") # Attach the instance 'part' to instance 'msg' msg.attach(part) server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(sender_email, sender_password) text = msg.as_string() server.sendmail(sender_email, recipient_email, text) server.quit() except Exception as error: print(f"An error occurred: {error}") # return 1 def make_api_request(url, params): """Generic function to make API GET requests and return JSON data.""" try: response = requests.get(url, params=params) response.raise_for_status() # Raises an HTTPError if the response was an error return response.json() # Return the parsed JSON data except requests.exceptions.HTTPError as http_err: print(f"HTTP error occurred: {http_err}") except Exception as err: print(f"An error occurred: {err}") def inventory_report(question): # Split the question to extract warehouse name, user question, and optional email if question.count(":") > 0: parts = question.split(":", 2) warehouse_name= parts[0].strip() user_question = parts[1].strip() user_email = parts[2].strip() if len(parts) > 2 else None print(f"Warehouse: {warehouse_name}, Email: {user_email}, Question: {user_question}") else: return "warehouse name not found" data = make_api_request(apis[0]["url"], apis[0]["params"]) print(data) if data: # Extracting the id for the warehouse with the name "WH" warehouse_id = next((item['id'] for item in data['result'] if item['wareHouseId'] == warehouse_name), None) if (warehouse_id): # Step 3: Update the placeholder with the actual warehouse_id for api in apis: if "warehouseId" in api["params"]: api["params"]["warehouseId"] = warehouse_id data1 = make_api_request(apis[1]["url"], apis[1]["params"]) if (data1): headers = ["S.No", "Warehouse Code", "Warehouse Name", "Customer Code", "Customer Name", "Item Code", "Item Name", "Currency", "EAN", "UOM", "Quantity", "Gross Weight", "Volume", "Total Value"] table_data = [] for index, item in enumerate(data1['result'], start=1): row = [ index, # Serial number item['warehouse']['code'], item['warehouse']['name'], item['customer']['code'], item['customer']['name'], item['skuMaster']['code'], item['skuMaster']['name'], item['currency']['code'], item['eanUpc'], item['uom']['code'], item['totalQty'], item['grossWeight'], item['volume'], item['totalValue'] ] table_data.append(row) # Convert to pandas DataFrame df = pd.DataFrame(table_data, columns=headers) chart_link = chat_with_llm(df,question) return chart_link else: return "There are no inventory details for the warehouse you have given." else: return "Please provide a warehouse name available in the database." def chat_with_llm(df,question): sdf = SmartDataframe(df, config={"llm": llm_chart}) llm_response = sdf.chat(question) return llm_response def bind_llm(llm, tools,prompt_template): llm = llm.bind() agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template)) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) return agent_executor # Define input and output models using Pydantic class QueryInput(BaseModel): question: str = Field( description="The question to be answered by appropriate tool. Please follow the instructions. For API tool, do not send the question as it is. Please send the ASN id.")# Invoke datavisulaization tool by processing the user question and send two inputs to the tool. One input will be the warehouse name and another input to the tool will be the entire user_question itself. Please join those two strings and send them as a single input string with ':' as delimiter") # config: dict = Field(default={}, description="Optional configuration for the database query.") # Define the output model for database queries class QueryOutput(BaseModel): result: str = Field(..., description="Display the answer based on the prompts given in each tool. For dataVisualization tool, it sends a image file as output. Please give the image file path only to the gr.Image. For DocumentData tool, Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points.") # Wrap the function with StructuredTool for better parameter handling tools = [ StructuredTool( func=get_ASN_data, name="APIData", args_schema=QueryInput, output_schema=QueryOutput, description="Tool to get details of ASN api. ASN id will be in the input with the format of first three letters as ASN and it is followed by 11 digit numeral. Pass only the id as input. Do not send the complete user question to the tool. If there are any other queries related to ASN without ASN id, please use the document tool." ), StructuredTool( func=document_data_tool, name="DocumentData", args_schema=QueryInput, output_schema=QueryOutput, description="You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. " ), StructuredTool( func=database_tool, name="DatabaseQuery", args_schema=QueryInput, output_schema=QueryOutput, description="Tool to query the database based on structured input." ), StructuredTool( func=inventory_report, name="dataVisualization", args_schema=QueryInput, output_schema=QueryOutput, description=""" Tool to generate a visual chart output for a particular warehouse based on the provided question. This tool processes the user question to identify the warehouse name and the specific request. If the user specifies an email, include the email in the input. The input format should be: 'warehouse name: user question: email (if any)'. The tool generates the requested chart and sends it to the provided email if specified. Examples: 1. Question without email, without warehouse: "Analyze item name and quantity in a bar chart in warehouse" Input to tool: "I want to analyze item name and quantity in a bar chart" 2. Question with email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics and send email to example@example.com" Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart: example@example.com" """ ) ] prompt_template = f"""You are an assistant that helps with database queries, API information, and document retrieval. Your job is to provide clear, complete, and detailed responses to the following queries. Please give the output response in an user friendly way and remove "**" from the response. For example, document related queries can be answered in a clear and concise way with numbering and not as a paragraph. Database related queries should be answered with proper indentation and use numbering for the rows. ASN id related queries should be answered with proper indentation and use numbering for the rows. For ASN id related questions, if the user specifies an ASN id, provide the information from the api tool. Pass only the id as input to the tool. Do not pass the entire question as input to the tool. If the details are not found, say it in a clear and concise way. You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. When answering, focus on providing actionable insights and clear explanations related to the specific query. Please remove "**" from the response. For SQL database-related questions, only use the fields available in the warehouse schema, including tables such as customer_master, efs_company_master, efs_group_company_master, efs_region_master, party_address_detail, wms_warehouse_master. For datavisualization, user will ask for inventory report of a particular warehouse. Your job is to return the image path to chat interface and display the image as output. {{agent_scratchpad}} Here is the information you need to process: Question: {{input}}""" agent_executor = bind_llm(llm,tools,prompt_template) def ensure_temp_chart_dir(): temp_chart_dir = os.getenv("IMAGE_MAIN_URL") if not os.path.exists(temp_chart_dir): os.makedirs(temp_chart_dir) def clean_gradio_tmp_dir(): tmp_dir = os.getenv("IMAGE_GRADIO_PATH") if os.path.exists(tmp_dir): try: shutil.rmtree(tmp_dir) except Exception as e: print(f"Error cleaning up /tmp/gradio/ directory: {e}") # Define the interface function max_iterations = 5 iterations = 0 def handle_query(user_question, chatbot, audio=None): """ Function to handle the processing of user input with `AgentExecutor.invoke()`. """ global current_event, stop_event # Clear previous stop event and current_event stop_event.clear() #if current_event and not current_event.done(): # chatbot.append(("","A query is already being processed. Please stop it before starting a new one.")) # return gr.update(value=chatbot) # Start the processing in a new thread current_event = executor.submit(answer_question_thread, user_question, chatbot) # Periodically check if current_event is done while not current_event.done(): if stop_event.is_set(): current_event.cancel() chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time.")) return gr.update(value=chatbot) time.sleep(1) # Wait for 1 second before checking again if current_event.cancelled(): chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time.")) return gr.update(value=chatbot) else: try: user_question1, response_text1 = current_event.result() # Get the result of the completed current_event print("output") print(user_question1) print(response_text1) chatbot.append((user_question1, response_text1)) return gr.update(value=chatbot) except Exception as e: print(f"Error occurred: {e}") chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time.")) return gr.update(value=chatbot) def stop_processing(chatbot): """ Stops the current processing if it's running. """ global current_event, stop_event if current_event and not current_event.done(): stop_event.set() # Signal the process to stop current_event.cancel() # Attempt to cancel the current_event chatbot.append(("Sorry, we encountered an error while processing your request. Please try after some time.","")) return gr.update(value=chatbot) # This function is for agent executor invoke with the option of stop def answer_question_thread(user_question, chatbot, audio=None): global iterations iterations = 0 # Ensure the temporary chart directory exists # ensure_temp_chart_dir() # Clean the /tmp/gradio/ directory # clean_gradio_tmp_dir() # Handle audio input if provided """ if audio is not None: sample_rate, audio_data = audio audio_segment = AudioSegment( audio_data.tobytes(), frame_rate=sample_rate, sample_width=audio_data.dtype.itemsize, channels=1 ) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file: audio_segment.export(temp_audio_file.name, format="wav") temp_audio_file_path = temp_audio_file.name recognizer = sr.Recognizer() with sr.AudioFile(temp_audio_file_path) as source: audio_content = recognizer.record(source) try: user_question = recognizer.recognize_google(audio_content) except sr.UnknownValueError: user_question = "Sorry, I could not understand the audio." except sr.RequestError: user_question = "Could not request results from Google Speech Recognition service." """ while iterations < max_iterations: response = agent_executor.invoke({"input": user_question}, config={"callbacks": [langfuse_handler]}, early_stopping_method="generate") if isinstance(response, dict): response_text = response.get("output", "") else: response_text = response if "invalid" not in response_text.lower(): break iterations += 1 if iterations == max_iterations: return user_question , "Sorry, I couldn't complete your request" #"The agent could not generate a valid response within the iteration limit." if os.getenv("IMAGE_PATH") in response_text: # Open the image file img = Image.open(os.getenv("IMAGE_PATH")) # Convert the PIL Image to a base64 encoded string buffered = BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") img = f'' response_text = response.get("output", "").split(".")[0] + img email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}' match = re.search(email_pattern, user_question) if match: user_email = match.group() # Return the matched email # email send if len(user_email) > 0: # Send email with the chart image attached send_email_with_attachment_mailjet( recipient_email=user_email, subject="Warehouse Inventory Report", body=response.get("output", "").split(".")[0] + ". This is an auto-generated email containing a chart created using Generative AI.", # attachment_path=chart_path attach_img_base64=img_str) if "send email to" in user_question: try: os.remove(img) # Clean up the temporary image file except Exception as e: print(f"Error cleaning up image file: {e}") except Exception as e: print(f"Error loading image file: {e}") response_text = "Chart generation failed. Please try again." return user_question, response_text else: return user_question, response_text # response_text = response_text.replace('\n', ' ').replace(' ', ' ').strip() # return response_text # without forceful stop option def answer_question(user_question, chatbot, audio=None): global iterations iterations = 0 # Ensure the temporary chart directory exists # ensure_temp_chart_dir() # Clean the /tmp/gradio/ directory # clean_gradio_tmp_dir() # Handle audio input if provided if audio is not None: sample_rate, audio_data = audio audio_segment = AudioSegment( audio_data.tobytes(), frame_rate=sample_rate, sample_width=audio_data.dtype.itemsize, channels=1 ) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file: audio_segment.export(temp_audio_file.name, format="wav") temp_audio_file_path = temp_audio_file.name recognizer = sr.Recognizer() with sr.AudioFile(temp_audio_file_path) as source: audio_content = recognizer.record(source) try: user_question = recognizer.recognize_google(audio_content) except sr.UnknownValueError: user_question = "Sorry, I could not understand the audio." except sr.RequestError: user_question = "Could not request results from Google Speech Recognition service." while iterations < max_iterations: response = agent_executor.invoke({"input": user_question}, config={"callbacks": [langfuse_handler]}) if isinstance(response, dict): response_text = response.get("output", "") else: response_text = response if "invalid" not in response_text.lower(): break iterations += 1 if iterations == max_iterations: return "The agent could not generate a valid response within the iteration limit." if os.getenv("IMAGE_PATH") in response_text: # Open the image file img = Image.open(os.getenv("IMAGE_PATH")) # Convert the PIL Image to a base64 encoded string buffered = BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") img = f'' chatbot.append((user_question, img)) email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}' match = re.search(email_pattern, user_question) if match: user_email = match.group() # Return the matched email # email send if len(user_email) > 0: # Send email with the chart image attached send_email_with_attachment_mailjet( recipient_email=user_email, subject="Warehouse Inventory Report", body=response.get("output", "").split(".")[0], # attachment_path=chart_path attachment_path=img_str) # Send email with the chart image attached """send_email_with_attachment( recipient_email=user_email, subject="Warehouse Inventory Report", body=response.get("output", "").split(":")[0], # attachment_path=chart_path attachment_path=os.getenv("IMAGE_PATH") )""" if "send email to" in user_question: try: os.remove(img) # Clean up the temporary image file except Exception as e: print(f"Error cleaning up image file: {e}") except Exception as e: print(f"Error loading image file: {e}") chatbot.append((user_question, "Chart generation failed. Please try again.")) return gr.update(value=chatbot) else: chatbot.append((user_question, response_text)) return gr.update(value=chatbot) def submit_feedback(feedback, chatbot, request: gr.Request): gr.Info("Thank you for your feedback.") #save feedback with user question and response in database save_feedback(request.username,chatbot[-1][0], chatbot[-1][1], feedback) feedback_response = "User feedback: " + feedback return chatbot + [(feedback_response, None)], gr.update(visible=False), gr.update(visible=False) # Function to connect to MySQL database def connect_to_db(): return mysql.connector.connect( host=DB_HOST, user=DB_USER, password=DB_PASSWORD, database=DB_NAME ) # Function to save feedback to the database def save_feedback(username, user_question, user_response, feedback): try: conn = connect_to_db() cursor = conn.cursor() query = "INSERT INTO user_feedback (username, question, response, feedback) VALUES (%s, %s, %s, %s)" cursor.execute(query, (username, user_question, user_response, feedback)) conn.commit() except mysql.connector.Error as err: print(f"Error: {err}") finally: if cursor: cursor.close() if conn: conn.close() def handle_dislike(data: gr.LikeData): if not data.liked: print("downvote") gr.Info("Please enter your feedback.") return gr.update(visible=True), gr.update(visible=True) else: print("upvote") return gr.update(visible=False), gr.update(visible=False) # greet with user name on successful login def update_message(request: gr.Request): return f"