# Copyright 2019-present NAVER Corp. # CC BY-NC-SA 3.0 # Available only for non-commercial use import pdb import numpy as np import torch import torch.nn as nn class APLoss(nn.Module): """differentiable AP loss, through quantization. Input: (N, M) values in [min, max] label: (N, M) values in {0, 1} Returns: list of query AP (for each n in {1..N}) Note: typically, you want to minimize 1 - mean(AP) """ def __init__(self, nq=25, min=0, max=1, euc=False): nn.Module.__init__(self) assert isinstance(nq, int) and 2 <= nq <= 100 self.nq = nq self.min = min self.max = max self.euc = euc gap = max - min assert gap > 0 # init quantizer = non-learnable (fixed) convolution self.quantizer = q = nn.Conv1d(1, 2 * nq, kernel_size=1, bias=True) a = (nq - 1) / gap # 1st half = lines passing to (min+x,1) and (min+x+1/a,0) with x = {nq-1..0}*gap/(nq-1) q.weight.data[:nq] = -a q.bias.data[:nq] = torch.from_numpy( a * min + np.arange(nq, 0, -1) ) # b = 1 + a*(min+x) # 2nd half = lines passing to (min+x,1) and (min+x-1/a,0) with x = {nq-1..0}*gap/(nq-1) q.weight.data[nq:] = a q.bias.data[nq:] = torch.from_numpy( np.arange(2 - nq, 2, 1) - a * min ) # b = 1 - a*(min+x) # first and last one are special: just horizontal straight line q.weight.data[0] = q.weight.data[-1] = 0 q.bias.data[0] = q.bias.data[-1] = 1 def compute_AP(self, x, label): N, M = x.shape if self.euc: # euclidean distance in same range than similarities x = 1 - torch.sqrt(2.001 - 2 * x) # quantize all predictions q = self.quantizer(x.unsqueeze(1)) q = torch.min(q[:, : self.nq], q[:, self.nq :]).clamp(min=0) # N x Q x M nbs = q.sum(dim=-1) # number of samples N x Q = c rec = (q * label.view(N, 1, M).float()).sum( dim=-1 ) # nb of correct samples = c+ N x Q prec = rec.cumsum(dim=-1) / (1e-16 + nbs.cumsum(dim=-1)) # precision rec /= rec.sum(dim=-1).unsqueeze(1) # norm in [0,1] ap = (prec * rec).sum(dim=-1) # per-image AP return ap def forward(self, x, label): assert x.shape == label.shape # N x M return self.compute_AP(x, label)