import numpy as np def line_to_border(line, size): # line:(a,b,c), ax+by+c=0 # size:(W,H) H, W = size[1], size[0] a, b, c = line[0], line[1], line[2] epsa = 1e-8 if a >= 0 else -1e-8 epsb = 1e-8 if b >= 0 else -1e-8 intersection_list = [] y_left = -c / (b + epsb) y_right = (-c - a * (W - 1)) / (b + epsb) x_top = -c / (a + epsa) x_down = (-c - b * (H - 1)) / (a + epsa) if y_left >= 0 and y_left <= H - 1: intersection_list.append([0, y_left]) if y_right >= 0 and y_right <= H - 1: intersection_list.append([W - 1, y_right]) if x_top >= 0 and x_top <= W - 1: intersection_list.append([x_top, 0]) if x_down >= 0 and x_down <= W - 1: intersection_list.append([x_down, H - 1]) if len(intersection_list) != 2: return None intersection_list = np.asarray(intersection_list) return intersection_list def find_point_in_line(end_point): x_span, y_span = ( end_point[1, 0] - end_point[0, 0], end_point[1, 1] - end_point[0, 1], ) mv = np.random.uniform() point = np.asarray([end_point[0, 0] + x_span * mv, end_point[0, 1] + y_span * mv]) return point def epi_line(point, F): homo = np.concatenate([point, np.ones([len(point), 1])], axis=-1) epi = np.matmul(homo, F.T) return epi def dis_point_to_line(line, point): homo = np.concatenate([point, np.ones([len(point), 1])], axis=-1) dis = line * homo dis = dis.sum(axis=-1) / (np.linalg.norm(line[:, :2], axis=-1) + 1e-8) return abs(dis) def SGD_oneiter(F1, F2, size1, size2): H1, W1 = size1[1], size1[0] factor1 = 1 / np.linalg.norm(size1) factor2 = 1 / np.linalg.norm(size2) p0 = np.asarray([(W1 - 1) * np.random.uniform(), (H1 - 1) * np.random.uniform()]) epi1 = epi_line(p0[np.newaxis], F1)[0] border_point1 = line_to_border(epi1, size2) if border_point1 is None: return -1 p1 = find_point_in_line(border_point1) epi2 = epi_line(p0[np.newaxis], F2) d1 = dis_point_to_line(epi2, p1[np.newaxis])[0] * factor2 epi3 = epi_line(p1[np.newaxis], F2.T) d2 = dis_point_to_line(epi3, p0[np.newaxis])[0] * factor1 return (d1 + d2) / 2 def compute_SGD(F1, F2, size1, size2): np.random.seed(1234) N = 1000 max_iter = N * 10 count, sgd = 0, 0 for i in range(max_iter): d1 = SGD_oneiter(F1, F2, size1, size2) if d1 < 0: continue d2 = SGD_oneiter(F2, F1, size1, size2) if d2 < 0: continue count += 1 sgd += (d1 + d2) / 2 if count == N: break if count == 0: return 1 else: return sgd / count def compute_inlier_rate(x1, x2, size1, size2, F_gt, th=0.003): t1, t2 = np.linalg.norm(size1) * th, np.linalg.norm(size2) * th epi1, epi2 = epi_line(x1, F_gt), epi_line(x2, F_gt.T) dis1, dis2 = dis_point_to_line(epi1, x2), dis_point_to_line(epi2, x1) mask_inlier = np.logical_and(dis1 < t2, dis2 < t1) return mask_inlier.mean() if len(mask_inlier) != 0 else 0