import numpy as np def norm_kpt(K, kp): kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1) kp = np.matmul(kp, np.linalg.inv(K).T)[:, :2] return kp def unnorm_kp(K, kp): kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1) kp = np.matmul(kp, K.T)[:, :2] return kp def interpolate_depth(pos, depth): # pos:[y,x] ids = np.array(range(0, pos.shape[0])) h, w = depth.shape i = pos[:, 0] j = pos[:, 1] valid_corner = np.logical_and( np.logical_and(i > 0, i < h - 1), np.logical_and(j > 0, j < w - 1) ) i, j = i[valid_corner], j[valid_corner] ids = ids[valid_corner] i_top_left = np.floor(i).astype(np.int32) j_top_left = np.floor(j).astype(np.int32) i_top_right = np.floor(i).astype(np.int32) j_top_right = np.ceil(j).astype(np.int32) i_bottom_left = np.ceil(i).astype(np.int32) j_bottom_left = np.floor(j).astype(np.int32) i_bottom_right = np.ceil(i).astype(np.int32) j_bottom_right = np.ceil(j).astype(np.int32) # Valid depth depth_top_left, depth_top_right, depth_down_left, depth_down_right = ( depth[i_top_left, j_top_left], depth[i_top_right, j_top_right], depth[i_bottom_left, j_bottom_left], depth[i_bottom_right, j_bottom_right], ) valid_depth = np.logical_and( np.logical_and(depth_top_left > 0, depth_top_right > 0), np.logical_and(depth_down_left > 0, depth_down_left > 0), ) ids = ids[valid_depth] depth_top_left, depth_top_right, depth_down_left, depth_down_right = ( depth_top_left[valid_depth], depth_top_right[valid_depth], depth_down_left[valid_depth], depth_down_right[valid_depth], ) i, j, i_top_left, j_top_left = ( i[valid_depth], j[valid_depth], i_top_left[valid_depth], j_top_left[valid_depth], ) # Interpolation dist_i_top_left = i - i_top_left.astype(np.float32) dist_j_top_left = j - j_top_left.astype(np.float32) w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left) w_top_right = (1 - dist_i_top_left) * dist_j_top_left w_bottom_left = dist_i_top_left * (1 - dist_j_top_left) w_bottom_right = dist_i_top_left * dist_j_top_left interpolated_depth = ( w_top_left * depth_top_left + w_top_right * depth_top_right + w_bottom_left * depth_down_left + w_bottom_right * depth_down_right ) return [interpolated_depth, ids] def reprojection(depth_map, kpt, dR, dt, K1_img2depth, K1, K2): # warp kpt from img1 to img2 def swap_axis(data): return np.stack([data[:, 1], data[:, 0]], axis=-1) kp_depth = unnorm_kp(K1_img2depth, kpt) uv_depth = swap_axis(kp_depth) z, valid_idx = interpolate_depth(uv_depth, depth_map) norm_kp = norm_kpt(K1, kpt) norm_kp_valid = np.concatenate( [norm_kp[valid_idx, :], np.ones((len(valid_idx), 1))], axis=-1 ) xyz_valid = norm_kp_valid * z.reshape(-1, 1) xyz2 = np.matmul(xyz_valid, dR.T) + dt.reshape(1, 3) xy2 = xyz2[:, :2] / xyz2[:, 2:] kp2, valid = np.ones(kpt.shape) * 1e5, np.zeros(kpt.shape[0]) kp2[valid_idx] = unnorm_kp(K2, xy2) valid[valid_idx] = 1 return kp2, valid.astype(bool) def reprojection_2s(kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2): # size:H*W depth_size1, depth_size2 = [depth1.shape[0], depth1.shape[1]], [ depth2.shape[0], depth2.shape[1], ] scale_1 = [float(depth_size1[0]) / size1[0], float(depth_size1[1]) / size1[1], 1] scale_2 = [float(depth_size2[0]) / size2[0], float(depth_size2[1]) / size2[1], 1] K1_img2depth, K2_img2depth = np.diag(np.asarray(scale_1)), np.diag( np.asarray(scale_2) ) kp1_2_proj, valid1_2 = reprojection(depth1, kp1, dR, dt, K1_img2depth, K1, K2) kp2_1_proj, valid2_1 = reprojection( depth2, kp2, dR.T, -np.matmul(dR.T, dt), K2_img2depth, K2, K1 ) return [kp1_2_proj, kp2_1_proj], [valid1_2, valid2_1] def make_corr( kp1, kp2, desc1, desc2, depth1, depth2, K1, K2, dR, dt, size1, size2, corr_th, incorr_th, check_desc=False, ): # make reprojection [kp1_2, kp2_1], [valid1_2, valid2_1] = reprojection_2s( kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2 ) num_pts1, num_pts2 = kp1.shape[0], kp2.shape[0] # reprojection error dis_mat1 = np.sqrt( abs( (kp1**2).sum(1, keepdims=True) + (kp2_1**2).sum(1, keepdims=False)[np.newaxis] - 2 * np.matmul(kp1, kp2_1.T) ) ) dis_mat2 = np.sqrt( abs( (kp2**2).sum(1, keepdims=True) + (kp1_2**2).sum(1, keepdims=False)[np.newaxis] - 2 * np.matmul(kp2, kp1_2.T) ) ) repro_error = np.maximum(dis_mat1, dis_mat2.T) # n1*n2 # find corr index nn_sort1 = np.argmin(repro_error, axis=1) nn_sort2 = np.argmin(repro_error, axis=0) mask_mutual = nn_sort2[nn_sort1] == np.arange(kp1.shape[0]) mask_inlier = ( np.take_along_axis( repro_error, indices=nn_sort1[:, np.newaxis], axis=-1 ).squeeze(1) < corr_th ) mask = mask_mutual & mask_inlier corr_index = np.stack( [np.arange(num_pts1)[mask], np.arange(num_pts2)[nn_sort1[mask]]], axis=-1 ) if check_desc: # filter kpt in same pos using desc distance(e.g. DoG kpt) x1_valid, x2_valid = kp1[corr_index[:, 0]], kp2[corr_index[:, 1]] mask_samepos1 = np.logical_and( x1_valid[:, 0, np.newaxis] == kp1[np.newaxis, :, 0], x1_valid[:, 1, np.newaxis] == kp1[np.newaxis, :, 1], ) mask_samepos2 = np.logical_and( x2_valid[:, 0, np.newaxis] == kp2[np.newaxis, :, 0], x2_valid[:, 1, np.newaxis] == kp2[np.newaxis, :, 1], ) duplicated_mask = np.logical_or( mask_samepos1.sum(-1) > 1, mask_samepos2.sum(-1) > 1 ) duplicated_index = np.nonzero(duplicated_mask)[0] unique_corr_index = corr_index[~duplicated_mask] clean_duplicated_corr = [] for index in duplicated_index: cur_desc1, cur_desc2 = ( desc1[mask_samepos1[index]], desc2[mask_samepos2[index]], ) cur_desc_mat = np.matmul(cur_desc1, cur_desc2.T) cur_max_index = [ np.argmax(cur_desc_mat) // cur_desc_mat.shape[1], np.argmax(cur_desc_mat) % cur_desc_mat.shape[1], ] clean_duplicated_corr.append( np.stack( [ np.arange(num_pts1)[mask_samepos1[index]][cur_max_index[0]], np.arange(num_pts2)[mask_samepos2[index]][cur_max_index[1]], ] ) ) clean_corr_index = unique_corr_index if len(clean_duplicated_corr) != 0: clean_duplicated_corr = np.stack(clean_duplicated_corr, axis=0) clean_corr_index = np.concatenate( [clean_corr_index, clean_duplicated_corr], axis=0 ) else: clean_corr_index = corr_index # find incorr mask_incorr1 = np.min(dis_mat2.T[valid1_2], axis=-1) > incorr_th mask_incorr2 = np.min(dis_mat1.T[valid2_1], axis=-1) > incorr_th incorr_index1, incorr_index2 = ( np.arange(num_pts1)[valid1_2][mask_incorr1.squeeze()], np.arange(num_pts2)[valid2_1][mask_incorr2.squeeze()], ) return clean_corr_index, incorr_index1, incorr_index2