import os import glob import pickle from posixpath import basename import numpy as np import h5py from .base_dumper import BaseDumper import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) sys.path.insert(0, ROOT_DIR) import utils class scannet(BaseDumper): def get_seqs(self): self.pair_list = np.loadtxt("../assets/scannet_eval_list.txt", dtype=str) self.seq_list = np.unique( np.asarray([path.split("/")[0] for path in self.pair_list[:, 0]], dtype=str) ) self.dump_seq, self.img_seq = [], [] for seq in self.seq_list: dump_dir = os.path.join(self.config["feature_dump_dir"], seq) cur_img_seq = glob.glob( os.path.join( os.path.join(self.config["rawdata_dir"], seq, "img", "*.jpg") ) ) cur_dump_seq = [ os.path.join(dump_dir, path.split("/")[-1]) + "_" + self.config["extractor"]["name"] + "_" + str(self.config["extractor"]["num_kpt"]) + ".hdf5" for path in cur_img_seq ] self.img_seq += cur_img_seq self.dump_seq += cur_dump_seq def format_dump_folder(self): if not os.path.exists(self.config["feature_dump_dir"]): os.mkdir(self.config["feature_dump_dir"]) for seq in self.seq_list: seq_dir = os.path.join(self.config["feature_dump_dir"], seq) if not os.path.exists(seq_dir): os.mkdir(seq_dir) def format_dump_data(self): print("Formatting data...") self.data = { "K1": [], "K2": [], "R": [], "T": [], "e": [], "f": [], "fea_path1": [], "fea_path2": [], "img_path1": [], "img_path2": [], } for pair in self.pair_list: img_path1, img_path2 = pair[0], pair[1] seq = img_path1.split("/")[0] index1, index2 = int(img_path1.split("/")[-1][:-4]), int( img_path2.split("/")[-1][:-4] ) ex1, ex2 = np.loadtxt( os.path.join( self.config["rawdata_dir"], seq, "extrinsic", str(index1) + ".txt" ), dtype=float, ), np.loadtxt( os.path.join( self.config["rawdata_dir"], seq, "extrinsic", str(index2) + ".txt" ), dtype=float, ) K1, K2 = np.loadtxt( os.path.join( self.config["rawdata_dir"], seq, "intrinsic", str(index1) + ".txt" ), dtype=float, ), np.loadtxt( os.path.join( self.config["rawdata_dir"], seq, "intrinsic", str(index2) + ".txt" ), dtype=float, ) relative_extrinsic = np.matmul(np.linalg.inv(ex2), ex1) dR, dt = relative_extrinsic[:3, :3], relative_extrinsic[:3, 3] dt /= np.sqrt(np.sum(dt**2)) e_gt_unnorm = np.reshape( np.matmul( np.reshape( utils.evaluation_utils.np_skew_symmetric( dt.astype("float64").reshape(1, 3) ), (3, 3), ), np.reshape(dR.astype("float64"), (3, 3)), ), (3, 3), ) e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) f_gt_unnorm = np.linalg.inv(K2.T) @ e_gt @ np.linalg.inv(K1) f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) self.data["K1"].append(K1), self.data["K2"].append(K2) self.data["R"].append(dR), self.data["T"].append(dt) self.data["e"].append(e_gt), self.data["f"].append(f_gt) dump_seq_dir = os.path.join(self.config["feature_dump_dir"], seq) fea_path1, fea_path2 = os.path.join( dump_seq_dir, img_path1.split("/")[-1] + "_" + self.config["extractor"]["name"] + "_" + str(self.config["extractor"]["num_kpt"]) + ".hdf5", ), os.path.join( dump_seq_dir, img_path2.split("/")[-1] + "_" + self.config["extractor"]["name"] + "_" + str(self.config["extractor"]["num_kpt"]) + ".hdf5", ) self.data["img_path1"].append(img_path1), self.data["img_path2"].append( img_path2 ) self.data["fea_path1"].append(fea_path1), self.data["fea_path2"].append( fea_path2 ) self.form_standard_dataset()