# SGMNet Implementation ![Framework](assets/teaser.png) PyTorch implementation of SGMNet for ICCV'21 paper ["Learning to Match Features with Seeded Graph Matching Network"](https://arxiv.org/abs/2108.08771), by Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang Bai, Zeyu Hu, Chiew-Lan Tai, Long Quan. This work focuses on keypoint-based image matching problem. We mitigate the qudratic complexity issue for typical GNN-based matching by leveraging a restrited set of pre-matched seeds. This repo contains training, evaluation and basic demo sripts used in our paper. As baseline, it also includes **our implementation** for [SuperGlue](https://arxiv.org/abs/1911.11763). If you find this project useful, please cite: ``` @article{chen2021sgmnet, title={Learning to Match Features with Seeded Graph Matching Network}, author={Chen, Hongkai and Luo, Zixin and Zhang, Jiahui and Zhou, Lei and Bai, Xuyang and Hu, Zeyu and Tai, Chiew-Lan and Quan, Long}, journal={International Conference on Computer Vision (ICCV)}, year={2021} } ``` Part of the code is borrowed or ported from [SuperPoint](https://github.com/magicleap/SuperPointPretrainedNetwork), for SuperPoint implementation, [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork), for SuperGlue implementation and exact auc computation, [OANet](https://github.com/zjhthu/OANet), for training scheme, [PointCN](https://github.com/vcg-uvic/learned-correspondence-release), for implementaion of PointCN block and geometric transformations, [FM-Bench](https://github.com/JiawangBian/FM-Bench), for evaluation of fundamental matrix estimation. Please also cite these works if you find the corresponding code useful. ## Requirements We use PyTorch 1.6, later version should also be compatible. Please refer to [requirements.txt](requirements.txt) for other dependencies. If you are using conda, you may configure the environment as: ```bash conda create --name sgmnet python=3.7 -y && \ pip install -r requirements.txt && \ conda activate sgmnet ``` ## Get started Clone the repo: ```bash git clone https://github.com/vdvchen/SGMNet.git && \ ``` download model weights from [here](https://drive.google.com/file/d/1Ca0WmKSSt2G6P7m8YAOlSAHEFar_TAWb/view?usp=sharing) extract weights by ```bash tar -xvf weights.tar.gz ``` A quick demo for image matching can be called by: ```bash cd demo && python demo.py --config_path configs/sgm_config.yaml ``` The resutls will be saved as **match.png** in demo folder. You may configure the matcher in corresponding yaml file. ## Evaluation We demonstrate evaluation process with RootSIFT and SGMNet. Evaluation with other features/matchers can be conducted by configuring the corresponding yaml files. ### 1. YFCC Evaluation Refer to [OANet](https://github.com/zjhthu/OANet) repo to download raw YFCC100M dataset **Data Generation** 1. Configure **datadump/configs/yfcc_root.yaml** for the following entries **rawdata_dir**: path for yfcc rawdata **feature_dump_dir**: dump path for extracted features **dataset_dump_dir**: dump path for generated dataset **extractor**: configuration for keypoint extractor (2k RootSIFT by default) 2. Generate data by ```bash cd datadump python dump.py --config_path configs/yfcc_root.yaml ``` An h5py data file will be generated under **dataset_dump_dir**, e.g. **yfcc_root_2000.hdf5** **Evaluation**: 1. Configure **evaluation/configs/eval/yfcc_eval_sgm.yaml** for the following entries **reader.rawdata_dir**: path for yfcc_rawdata **reader.dataset_dir**: path for generated h5py dataset file **matcher**: configuration for sgmnet (we use the default setting) 2. To run evaluation, ```bash cd evaluation python evaluate.py --config_path configs/eval/yfcc_eval_sgm.yaml ``` For 2k RootSIFT matching, similar results as below should be obtained, ```bash auc th: [5 10 15 20 25 30] approx auc: [0.634 0.729 0.783 0.818 0.843 0.861] exact auc: [0.355 0.552 0.655 0.719 0.762 0.793] mean match score: 17.06 mean precision: 86.08 ``` ### 2. ScanNet Evaluation Download processed [ScanNet evaluation data](https://drive.google.com/file/d/14s-Ce8Vq7XedzKon8MZSB_Mz_iC6oFPy/view?usp=sharing). **Data Generation** 1. Configure **datadump/configs/scannet_root.yaml** for the following entries **rawdata_dir**: path for ScanNet raw data **feature_dump_dir**: dump path for extracted features **dataset_dump_dir**: dump path for generated dataset **extractor**: configuration for keypoint extractor (2k RootSIFT by default) 2. Generate data by ```bash cd datadump python dump.py --config_path configs/scannet_root.yaml ``` An h5py data file will be generated under **dataset_dump_dir**, e.g. **scannet_root_2000.hdf5** **Evaluation**: 1. Configure **evaluation/configs/eval/scannet_eval_sgm.yaml** for the following entries **reader.rawdata_dir**: path for ScanNet evaluation data **reader.dataset_dir**: path for generated h5py dataset file **matcher**: configuration for sgmnet (we use the default setting) 2. To run evaluation, ```bash cd evaluation python evaluate.py --config_path configs/eval/scannet_eval_sgm.yaml ``` For 2k RootSIFT matching, similar results as below should be obtained, ```bash auc th: [5 10 15 20 25 30] approx auc: [0.322 0.427 0.493 0.541 0.577 0.606] exact auc: [0.125 0.283 0.383 0.452 0.503 0.541] mean match score: 8.79 mean precision: 45.54 ``` ### 3. FM-Bench Evaluation Refer to [FM-Bench](https://github.com/JiawangBian/FM-Bench) repo to download raw FM-Bench dataset **Data Generation** 1. Configure **datadump/configs/fmbench_root.yaml** for the following entries **rawdata_dir**: path for fmbench raw data **feature_dump_dir**: dump path for extracted features **dataset_dump_dir**: dump path for generated dataset **extractor**: configuration for keypoint extractor (4k RootSIFT by default) 2. Generate data by ```bash cd datadump python dump.py --config_path configs/fmbench_root.yaml ``` An h5py data file will be generated under **dataset_dump_dir**, e.g. **fmbench_root_4000.hdf5** **Evaluation**: 1. Configure **evaluation/configs/eval/fm_eval_sgm.yaml** for the following entries **reader.rawdata_dir**: path for fmbench raw data **reader.dataset_dir**: path for generated h5py dataset file **matcher**: configuration for sgmnet (we use the default setting) 2. To run evaluation, ```bash cd evaluation python evaluate.py --config_path configs/eval/fm_eval_sgm.yaml ``` For 4k RootSIFT matching, similar results as below should be obtained, ```bash CPC results: F_recall: 0.617 precision: 0.7489 precision_post: 0.8399 num_corr: 663.838 num_corr_post: 284.455 KITTI results: F_recall: 0.911 precision: 0.9035133886251774 precision_post: 0.9837278538989989 num_corr: 1670.548 num_corr_post: 1121.902 TUM results: F_recall: 0.666 precision: 0.6520260208250837 precision_post: 0.731507123852191 num_corr: 1650.579 num_corr_post: 941.846 Tanks_and_Temples results: F_recall: 0.855 precision: 0.7452896681043316 precision_post: 0.8020184635328004 num_corr: 946.571 num_corr_post: 466.865 ``` ### 4. Run time and memory Evaluation We provide a script to test run time and memory consumption, for a quick start, run ```bash cd evaluation python eval_cost.py --matcher_name SGM --config_path configs/cost/sgm_cost.yaml --num_kpt=4000 ``` You may configure the matcher in corresponding yaml files. ## Visualization For visualization of matching results on different dataset, add **--vis_folder** argument on evaluation command, e.g. ```bash cd evaluation python evaluate.py --config_path configs/eval/***.yaml --vis_folder visualization ``` ## Training We train both SGMNet and SuperGlue on [GL3D](https://github.com/lzx551402/GL3D) dataset. The training data is pre-generated in an offline manner, which yields about 400k pairs in total. To generate training/validation dataset 1. Download [GL3D](https://github.com/lzx551402/GL3D) rawdata 2. Configure **datadump/configs/gl3d.yaml**. Some important entries are **rawdata_dir**: path for GL3D raw data **feature_dump_dir**: path for extracted features **dataset_dump_dir**: path for generated dataset **pairs_per_seq**: number of pairs sampled for each sequence **angle_th**: angle threshold for sampled pairs **overlap_th**: common track threshold for sampled pairs **extractor**: configuration for keypoint extractor 3. dump dataset by ```bash cd datadump python dump.py --config_path configs/gl3d.yaml ``` Two parts of data will be generated. (1) Extracted features and keypoints will be placed under **feature_dump_dir** (2) Pairwise dataset will be placed under **dataset_dump_dir**. 4. After data generation, configure **train/train_sgm.sh** for necessary entries, including **rawdata_path**: path for GL3D raw data **desc_path**: path for extracted features **dataset_path**: path for generated dataset **desc_suffix**: suffix for keypoint files, _root_1000.hdf5 for 1k RootSIFT by default. **log_base**: log directory for training 5. run SGMNet training scripts by ```bash bash train_sgm.sh ``` our training scripts support multi-gpu training, which can be enabled by configure **train/train_sgm.sh** for these entries **CUDA_VISIBLE_DEVICES**: id of gpus to be used **nproc_per_node**: number of gpus to be used run SuperGlue training scripts by ```bash bash train_sg.sh ```