import torch import torch.nn as nn import numpy as np class APLoss(nn.Module): """differentiable AP loss, through quantization. Input: (N, M) values in [min, max] label: (N, M) values in {0, 1} Returns: list of query AP (for each n in {1..N}) Note: typically, you want to minimize 1 - mean(AP) """ def __init__(self, nq=25, min=0, max=1, euc=False): nn.Module.__init__(self) assert isinstance(nq, int) and 2 <= nq <= 100 self.nq = nq self.min = min self.max = max self.euc = euc gap = max - min assert gap > 0 # init quantizer = non-learnable (fixed) convolution self.quantizer = q = nn.Conv1d(1, 2 * nq, kernel_size=1, bias=True) a = (nq - 1) / gap # 1st half = lines passing to (min+x,1) and (min+x+1/a,0) with x = {nq-1..0}*gap/(nq-1) q.weight.data[:nq] = -a q.bias.data[:nq] = torch.from_numpy( a * min + np.arange(nq, 0, -1) ) # b = 1 + a*(min+x) # 2nd half = lines passing to (min+x,1) and (min+x-1/a,0) with x = {nq-1..0}*gap/(nq-1) q.weight.data[nq:] = a q.bias.data[nq:] = torch.from_numpy( np.arange(2 - nq, 2, 1) - a * min ) # b = 1 - a*(min+x) # first and last one are special: just horizontal straight line q.weight.data[0] = q.weight.data[-1] = 0 q.bias.data[0] = q.bias.data[-1] = 1 def compute_AP(self, x, label): N, M = x.shape # print(x.shape, label.shape) if self.euc: # euclidean distance in same range than similarities x = 1 - torch.sqrt(2.001 - 2 * x) # quantize all predictions q = self.quantizer(x.unsqueeze(1)) q = torch.min(q[:, : self.nq], q[:, self.nq :]).clamp( min=0 ) # N x Q x M [1600, 20, 1681] nbs = q.sum(dim=-1) # number of samples N x Q = c rec = (q * label.view(N, 1, M).float()).sum( dim=-1 ) # nb of correct samples = c+ N x Q prec = rec.cumsum(dim=-1) / (1e-16 + nbs.cumsum(dim=-1)) # precision rec /= rec.sum(dim=-1).unsqueeze(1) # norm in [0,1] ap = (prec * rec).sum(dim=-1) # per-image AP return ap def forward(self, x, label): assert x.shape == label.shape # N x M return self.compute_AP(x, label) class PixelAPLoss(nn.Module): """Computes the pixel-wise AP loss: Given two images and ground-truth optical flow, computes the AP per pixel. feat1: (B, C, H, W) pixel-wise features extracted from img1 feat2: (B, C, H, W) pixel-wise features extracted from img2 aflow: (B, 2, H, W) absolute flow: aflow[...,y1,x1] = x2,y2 """ def __init__(self, sampler, nq=20): nn.Module.__init__(self) self.aploss = APLoss(nq, min=0, max=1, euc=False) self.name = "pixAP" self.sampler = sampler def loss_from_ap(self, ap, rel): return 1 - ap def forward(self, feat0, feat1, conf0, conf1, pos0, pos1, B, H, W, N=1200): # subsample things scores, gt, msk, qconf = self.sampler( feat0, feat1, conf0, conf1, pos0, pos1, B, H, W, N=1200 ) # compute pixel-wise AP n = qconf.numel() if n == 0: return 0 scores, gt = scores.view(n, -1), gt.view(n, -1) ap = self.aploss(scores, gt).view(msk.shape) pixel_loss = self.loss_from_ap(ap, qconf) loss = pixel_loss[msk].mean() return loss class ReliabilityLoss(PixelAPLoss): """same than PixelAPLoss, but also train a pixel-wise confidence that this pixel is going to have a good AP. """ def __init__(self, sampler, base=0.5, **kw): PixelAPLoss.__init__(self, sampler, **kw) assert 0 <= base < 1 self.base = base def loss_from_ap(self, ap, rel): return 1 - ap * rel - (1 - rel) * self.base