""" Modified from: https://github.com/cvg/glue-factory/blob/scannet1500/gluefactory/geometry/utils.py """ import numpy as np import torch def to_homogeneous(points): """Convert N-dimensional points to homogeneous coordinates. Args: points: torch.Tensor or numpy.ndarray with size (..., N). Returns: A torch.Tensor or numpy.ndarray with size (..., N+1). """ if isinstance(points, torch.Tensor): pad = points.new_ones(points.shape[:-1] + (1,)) return torch.cat([points, pad], dim=-1) elif isinstance(points, np.ndarray): pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) return np.concatenate([points, pad], axis=-1) else: raise ValueError def from_homogeneous(points, eps=0.0): """Remove the homogeneous dimension of N-dimensional points. Args: points: torch.Tensor or numpy.ndarray with size (..., N+1). eps: Epsilon value to prevent zero division. Returns: A torch.Tensor or numpy ndarray with size (..., N). """ return points[..., :-1] / (points[..., -1:] + eps) def batched_eye_like(x: torch.Tensor, n: int): """Create a batch of identity matrices. Args: x: a reference torch.Tensor whose batch dimension will be copied. n: the size of each identity matrix. Returns: A torch.Tensor of size (B, n, n), with same dtype and device as x. """ return torch.eye(n).to(x)[None].repeat(len(x), 1, 1) def skew_symmetric(v): """Create a skew-symmetric matrix from a (batched) vector of size (..., 3).""" z = torch.zeros_like(v[..., 0]) M = torch.stack( [ z, -v[..., 2], v[..., 1], v[..., 2], z, -v[..., 0], -v[..., 1], v[..., 0], z, ], dim=-1, ).reshape(v.shape[:-1] + (3, 3)) return M def transform_points(T, points): return from_homogeneous(to_homogeneous(points) @ T.transpose(-1, -2)) def is_inside(pts, shape): return (pts > 0).all(-1) & (pts < shape[:, None]).all(-1) def so3exp_map(w, eps: float = 1e-7): """Compute rotation matrices from batched twists. Args: w: batched 3D axis-angle vectors of size (..., 3). Returns: A batch of rotation matrices of size (..., 3, 3). """ theta = w.norm(p=2, dim=-1, keepdim=True) small = theta < eps div = torch.where(small, torch.ones_like(theta), theta) W = skew_symmetric(w / div) theta = theta[..., None] # ... x 1 x 1 res = W * torch.sin(theta) + (W @ W) * (1 - torch.cos(theta)) res = torch.where(small[..., None], W, res) # first-order Taylor approx return torch.eye(3).to(W) + res @torch.jit.script def distort_points(pts, dist): """Distort normalized 2D coordinates and check for validity of the distortion model. """ dist = dist.unsqueeze(-2) # add point dimension ndist = dist.shape[-1] undist = pts valid = torch.ones(pts.shape[:-1], device=pts.device, dtype=torch.bool) if ndist > 0: k1, k2 = dist[..., :2].split(1, -1) r2 = torch.sum(pts**2, -1, keepdim=True) radial = k1 * r2 + k2 * r2**2 undist = undist + pts * radial # The distortion model is supposedly only valid within the image # boundaries. Because of the negative radial distortion, points that # are far outside of the boundaries might actually be mapped back # within the image. To account for this, we discard points that are # beyond the inflection point of the distortion model, # e.g. such that d(r + k_1 r^3 + k2 r^5)/dr = 0 limited = ((k2 > 0) & ((9 * k1**2 - 20 * k2) > 0)) | ((k2 <= 0) & (k1 > 0)) limit = torch.abs( torch.where( k2 > 0, (torch.sqrt(9 * k1**2 - 20 * k2) - 3 * k1) / (10 * k2), 1 / (3 * k1), ) ) valid = valid & torch.squeeze(~limited | (r2 < limit), -1) if ndist > 2: p12 = dist[..., 2:] p21 = p12.flip(-1) uv = torch.prod(pts, -1, keepdim=True) undist = undist + 2 * p12 * uv + p21 * (r2 + 2 * pts**2) # TODO: handle tangential boundaries return undist, valid @torch.jit.script def J_distort_points(pts, dist): dist = dist.unsqueeze(-2) # add point dimension ndist = dist.shape[-1] J_diag = torch.ones_like(pts) J_cross = torch.zeros_like(pts) if ndist > 0: k1, k2 = dist[..., :2].split(1, -1) r2 = torch.sum(pts**2, -1, keepdim=True) uv = torch.prod(pts, -1, keepdim=True) radial = k1 * r2 + k2 * r2**2 d_radial = 2 * k1 + 4 * k2 * r2 J_diag += radial + (pts**2) * d_radial J_cross += uv * d_radial if ndist > 2: p12 = dist[..., 2:] p21 = p12.flip(-1) J_diag += 2 * p12 * pts.flip(-1) + 6 * p21 * pts J_cross += 2 * p12 * pts + 2 * p21 * pts.flip(-1) J = torch.diag_embed(J_diag) + torch.diag_embed(J_cross).flip(-1) return J def get_image_coords(img): h, w = img.shape[-2:] return ( torch.stack( torch.meshgrid( torch.arange(h, dtype=torch.float32, device=img.device), torch.arange(w, dtype=torch.float32, device=img.device), indexing="ij", )[::-1], dim=0, ).permute(1, 2, 0) )[None] + 0.5