from yacs.config import CfgNode as CN _CN = CN() ############## ↓ LoFTR Pipeline ↓ ############## _CN.LOFTR = CN() _CN.LOFTR.BACKBONE_TYPE = 'RepVGG' _CN.LOFTR.ALIGN_CORNER = False _CN.LOFTR.RESOLUTION = (8, 1) _CN.LOFTR.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even _CN.LOFTR.MP = False _CN.LOFTR.REPLACE_NAN = False _CN.LOFTR.EVAL_TIMES = 1 _CN.LOFTR.HALF = False # 1. LoFTR-backbone (local feature CNN) config _CN.LOFTR.BACKBONE = CN() _CN.LOFTR.BACKBONE.BLOCK_DIMS = [64, 128, 256] # s1, s2, s3 # 2. LoFTR-coarse module config _CN.LOFTR.COARSE = CN() _CN.LOFTR.COARSE.D_MODEL = 256 _CN.LOFTR.COARSE.D_FFN = 256 _CN.LOFTR.COARSE.NHEAD = 8 _CN.LOFTR.COARSE.LAYER_NAMES = ['self', 'cross'] * 4 _CN.LOFTR.COARSE.AGG_SIZE0 = 4 _CN.LOFTR.COARSE.AGG_SIZE1 = 4 _CN.LOFTR.COARSE.NO_FLASH = False _CN.LOFTR.COARSE.ROPE = True _CN.LOFTR.COARSE.NPE = None # [832, 832, long_side, long_side] Suggest setting based on the long side of the input image, especially when the long_side > 832 # 3. Coarse-Matching config _CN.LOFTR.MATCH_COARSE = CN() _CN.LOFTR.MATCH_COARSE.THR = 0.2 # recommend 0.2 for full model and 25 for optimized model _CN.LOFTR.MATCH_COARSE.BORDER_RM = 2 _CN.LOFTR.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1 _CN.LOFTR.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2 # training tricks: save GPU memory _CN.LOFTR.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock _CN.LOFTR.MATCH_COARSE.SPARSE_SPVS = True _CN.LOFTR.MATCH_COARSE.SKIP_SOFTMAX = False _CN.LOFTR.MATCH_COARSE.FP16MATMUL = False # 4. Fine-Matching config _CN.LOFTR.MATCH_FINE = CN() _CN.LOFTR.MATCH_FINE.SPARSE_SPVS = True _CN.LOFTR.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 1.0 _CN.LOFTR.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8 # 5. LoFTR Losses # -- # coarse-level _CN.LOFTR.LOSS = CN() _CN.LOFTR.LOSS.COARSE_TYPE = 'focal' # ['focal', 'cross_entropy'] _CN.LOFTR.LOSS.COARSE_WEIGHT = 1.0 _CN.LOFTR.LOSS.COARSE_SIGMOID_WEIGHT = 1.0 _CN.LOFTR.LOSS.LOCAL_WEIGHT = 0.5 _CN.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT = False _CN.LOFTR.LOSS.FINE_OVERLAP_WEIGHT = False _CN.LOFTR.LOSS.FINE_OVERLAP_WEIGHT2 = False # -- - -- # focal loss (coarse) _CN.LOFTR.LOSS.FOCAL_ALPHA = 0.25 _CN.LOFTR.LOSS.FOCAL_GAMMA = 2.0 _CN.LOFTR.LOSS.POS_WEIGHT = 1.0 _CN.LOFTR.LOSS.NEG_WEIGHT = 1.0 # -- # fine-level _CN.LOFTR.LOSS.FINE_TYPE = 'l2_with_std' # ['l2_with_std', 'l2'] _CN.LOFTR.LOSS.FINE_WEIGHT = 1.0 _CN.LOFTR.LOSS.FINE_CORRECT_THR = 1.0 # for filtering valid fine-level gts (some gt matches might fall out of the fine-level window) ############## Dataset ############## _CN.DATASET = CN() # 1. data config # training and validating _CN.DATASET.TRAINVAL_DATA_SOURCE = None # options: ['ScanNet', 'MegaDepth'] _CN.DATASET.TRAIN_DATA_ROOT = None _CN.DATASET.TRAIN_POSE_ROOT = None # (optional directory for poses) _CN.DATASET.TRAIN_NPZ_ROOT = None _CN.DATASET.TRAIN_LIST_PATH = None _CN.DATASET.TRAIN_INTRINSIC_PATH = None _CN.DATASET.VAL_DATA_ROOT = None _CN.DATASET.VAL_POSE_ROOT = None # (optional directory for poses) _CN.DATASET.VAL_NPZ_ROOT = None _CN.DATASET.VAL_LIST_PATH = None # None if val data from all scenes are bundled into a single npz file _CN.DATASET.VAL_INTRINSIC_PATH = None _CN.DATASET.FP16 = False # testing _CN.DATASET.TEST_DATA_SOURCE = None _CN.DATASET.TEST_DATA_ROOT = None _CN.DATASET.TEST_POSE_ROOT = None # (optional directory for poses) _CN.DATASET.TEST_NPZ_ROOT = None _CN.DATASET.TEST_LIST_PATH = None # None if test data from all scenes are bundled into a single npz file _CN.DATASET.TEST_INTRINSIC_PATH = None # 2. dataset config # general options _CN.DATASET.MIN_OVERLAP_SCORE_TRAIN = 0.4 # discard data with overlap_score < min_overlap_score _CN.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0 _CN.DATASET.AUGMENTATION_TYPE = None # options: [None, 'dark', 'mobile'] # scanNet options _CN.DATASET.SCAN_IMG_RESIZEX = 640 # resize the longer side, zero-pad bottom-right to square. _CN.DATASET.SCAN_IMG_RESIZEY = 480 # resize the shorter side, zero-pad bottom-right to square. # MegaDepth options _CN.DATASET.MGDPT_IMG_RESIZE = 640 # resize the longer side, zero-pad bottom-right to square. _CN.DATASET.MGDPT_IMG_PAD = True # pad img to square with size = MGDPT_IMG_RESIZE _CN.DATASET.MGDPT_DEPTH_PAD = True # pad depthmap to square with size = 2000 _CN.DATASET.MGDPT_DF = 8 _CN.DATASET.NPE_NAME = None ############## Trainer ############## _CN.TRAINER = CN() _CN.TRAINER.WORLD_SIZE = 1 _CN.TRAINER.CANONICAL_BS = 64 _CN.TRAINER.CANONICAL_LR = 6e-3 _CN.TRAINER.SCALING = None # this will be calculated automatically _CN.TRAINER.FIND_LR = False # use learning rate finder from pytorch-lightning # optimizer _CN.TRAINER.OPTIMIZER = "adamw" # [adam, adamw] _CN.TRAINER.TRUE_LR = None # this will be calculated automatically at runtime _CN.TRAINER.ADAM_DECAY = 0. # ADAM: for adam _CN.TRAINER.ADAMW_DECAY = 0.1 # step-based warm-up _CN.TRAINER.WARMUP_TYPE = 'linear' # [linear, constant] _CN.TRAINER.WARMUP_RATIO = 0. _CN.TRAINER.WARMUP_STEP = 4800 # learning rate scheduler _CN.TRAINER.SCHEDULER = 'MultiStepLR' # [MultiStepLR, CosineAnnealing, ExponentialLR] _CN.TRAINER.SCHEDULER_INTERVAL = 'epoch' # [epoch, step] _CN.TRAINER.MSLR_MILESTONES = [3, 6, 9, 12] # MSLR: MultiStepLR _CN.TRAINER.MSLR_GAMMA = 0.5 _CN.TRAINER.COSA_TMAX = 30 # COSA: CosineAnnealing _CN.TRAINER.ELR_GAMMA = 0.999992 # ELR: ExponentialLR, this value for 'step' interval # plotting related _CN.TRAINER.ENABLE_PLOTTING = True _CN.TRAINER.N_VAL_PAIRS_TO_PLOT = 32 # number of val/test paris for plotting _CN.TRAINER.PLOT_MODE = 'evaluation' # ['evaluation', 'confidence'] _CN.TRAINER.PLOT_MATCHES_ALPHA = 'dynamic' # geometric metrics and pose solver _CN.TRAINER.EPI_ERR_THR = 5e-4 # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue) _CN.TRAINER.POSE_GEO_MODEL = 'E' # ['E', 'F', 'H'] _CN.TRAINER.POSE_ESTIMATION_METHOD = 'RANSAC' # [RANSAC, LO-RANSAC] _CN.TRAINER.RANSAC_PIXEL_THR = 0.5 _CN.TRAINER.RANSAC_CONF = 0.99999 _CN.TRAINER.RANSAC_MAX_ITERS = 10000 _CN.TRAINER.USE_MAGSACPP = False # data sampler for train_dataloader _CN.TRAINER.DATA_SAMPLER = 'scene_balance' # options: ['scene_balance', 'random', 'normal'] # 'scene_balance' config _CN.TRAINER.N_SAMPLES_PER_SUBSET = 200 _CN.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT = True # whether sample each scene with replacement or not _CN.TRAINER.SB_SUBSET_SHUFFLE = True # after sampling from scenes, whether shuffle within the epoch or not _CN.TRAINER.SB_REPEAT = 1 # repeat N times for training the sampled data # 'random' config _CN.TRAINER.RDM_REPLACEMENT = True _CN.TRAINER.RDM_NUM_SAMPLES = None # gradient clipping _CN.TRAINER.GRADIENT_CLIPPING = 0.5 # reproducibility # This seed affects the data sampling. With the same seed, the data sampling is promised # to be the same. When resume training from a checkpoint, it's better to use a different # seed, otherwise the sampled data will be exactly the same as before resuming, which will # cause less unique data items sampled during the entire training. # Use of different seed values might affect the final training result, since not all data items # are used during training on ScanNet. (60M pairs of images sampled during traing from 230M pairs in total.) _CN.TRAINER.SEED = 66 def get_cfg_defaults(): """Get a yacs CfgNode object with default values for my_project.""" # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern return _CN.clone()