import argparse
from pathlib import Path
import gradio as gr
from common.utils import (
matcher_zoo,
ransac_zoo,
change_estimate_geom,
run_matching,
gen_examples,
GRADIO_VERSION,
DEFAULT_RANSAC_METHOD,
DEFAULT_SETTING_GEOMETRY,
DEFAULT_RANSAC_REPROJ_THRESHOLD,
DEFAULT_RANSAC_CONFIDENCE,
DEFAULT_RANSAC_MAX_ITER,
DEFAULT_MATCHING_THRESHOLD,
DEFAULT_SETTING_MAX_FEATURES,
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD,
)
DESCRIPTION = """
# Image Matching WebUI
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue!
🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui
🚀 All algorithms run on CPU for inference, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment.
🐛 Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues).
"""
def ui_change_imagebox(choice):
"""
Updates the image box with the given choice.
Args:
choice (list): The list of image sources to be displayed in the image box.
Returns:
dict: A dictionary containing the updated value, sources, and type for the image box.
"""
ret_dict = {
"value": None, # The updated value of the image box
"__type__": "update", # The type of update for the image box
}
if GRADIO_VERSION > "3":
return {
**ret_dict,
"sources": choice, # The list of image sources to be displayed
}
else:
return {
**ret_dict,
"source": choice, # The list of image sources to be displayed
}
def ui_reset_state(*args):
"""
Reset the state of the UI.
Returns:
tuple: A tuple containing the initial values for the UI state.
"""
key = list(matcher_zoo.keys())[0] # Get the first key from matcher_zoo
return (
None, # image0
None, # image1
DEFAULT_MATCHING_THRESHOLD, # matching_threshold
DEFAULT_SETTING_MAX_FEATURES, # max_features
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD, # keypoint_threshold
key, # matcher
ui_change_imagebox("upload"), # input image0
ui_change_imagebox("upload"), # input image1
"upload", # match_image_src
None, # keypoints
None, # raw matches
None, # ransac matches
{}, # matches result info
{}, # matcher config
None, # warped imageInstance of 'Radio' has no 'change' member
{}, # geometry result
DEFAULT_RANSAC_METHOD, # ransac_method
DEFAULT_RANSAC_REPROJ_THRESHOLD, # ransac_reproj_threshold
DEFAULT_RANSAC_CONFIDENCE, # ransac_confidence
DEFAULT_RANSAC_MAX_ITER, # ransac_max_iter
DEFAULT_SETTING_GEOMETRY, # geometry
)
# "footer {visibility: hidden}"
def run(server_name="0.0.0.0", server_port=7860):
"""
Runs the application.
Args:
config (dict): A dictionary containing configuration parameters for the application.
Returns:
None
"""
with gr.Blocks() as app:
# gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
gr.Image(
str(Path(__file__).parent / "assets/logo.webp"),
elem_id="logo-img",
show_label=False,
show_share_button=False,
show_download_button=False,
)
with gr.Column(scale=3):
gr.Markdown(DESCRIPTION)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
matcher_list = gr.Dropdown(
choices=list(matcher_zoo.keys()),
value="disk+lightglue",
label="Matching Model",
interactive=True,
)
match_image_src = gr.Radio(
(
["upload", "webcam", "clipboard"]
if GRADIO_VERSION > "3"
else ["upload", "webcam", "canvas"]
),
label="Image Source",
value="upload",
)
with gr.Row():
input_image0 = gr.Image(
label="Image 0",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
input_image1 = gr.Image(
label="Image 1",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
with gr.Row():
button_reset = gr.Button(value="Reset")
button_run = gr.Button(value="Run Match", variant="primary")
with gr.Accordion("Advanced Setting", open=False):
with gr.Accordion("Matching Setting", open=True):
with gr.Row():
match_setting_threshold = gr.Slider(
minimum=0.0,
maximum=1,
step=0.001,
label="Match thres.",
value=0.1,
)
match_setting_max_features = gr.Slider(
minimum=10,
maximum=10000,
step=10,
label="Max features",
value=1000,
)
# TODO: add line settings
with gr.Row():
detect_keypoints_threshold = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
label="Keypoint thres.",
value=0.015,
)
detect_line_threshold = gr.Slider(
minimum=0.1,
maximum=1,
step=0.01,
label="Line thres.",
value=0.2,
)
# matcher_lists = gr.Radio(
# ["NN-mutual", "Dual-Softmax"],
# label="Matcher mode",
# value="NN-mutual",
# )
with gr.Accordion("RANSAC Setting", open=True):
with gr.Row(equal_height=False):
ransac_method = gr.Dropdown(
choices=ransac_zoo.keys(),
value=DEFAULT_RANSAC_METHOD,
label="RANSAC Method",
interactive=True,
)
ransac_reproj_threshold = gr.Slider(
minimum=0.0,
maximum=12,
step=0.01,
label="Ransac Reproj threshold",
value=8.0,
)
ransac_confidence = gr.Slider(
minimum=0.0,
maximum=1,
step=0.00001,
label="Ransac Confidence",
value=DEFAULT_RANSAC_CONFIDENCE,
)
ransac_max_iter = gr.Slider(
minimum=0.0,
maximum=100000,
step=100,
label="Ransac Iterations",
value=DEFAULT_RANSAC_MAX_ITER,
)
with gr.Accordion("Geometry Setting", open=False):
with gr.Row(equal_height=False):
choice_estimate_geom = gr.Radio(
["Fundamental", "Homography"],
label="Reconstruct Geometry",
value=DEFAULT_SETTING_GEOMETRY,
)
# collect inputs
inputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_estimate_geom,
]
# Add some examples
with gr.Row():
# Example inputs
gr.Examples(
examples=gen_examples(),
inputs=inputs,
outputs=[],
fn=run_matching,
cache_examples=False,
label=(
"Examples (click one of the images below to Run"
" Match)"
),
)
with gr.Accordion("Open for More!", open=False):
gr.Markdown(
f"""