from argparse import Namespace import os, sys import torch import cv2 from pathlib import Path from .base import Viz from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors patch2pix_path = Path(__file__).parent / '../../third_party/patch2pix' sys.path.append(str(patch2pix_path)) from third_party.patch2pix.utils.eval.model_helper import load_model, estimate_matches class VizPatch2Pix(Viz): def __init__(self, args): super().__init__() if type(args) == dict: args = Namespace(**args) self.imsize = args.imsize self.match_threshold = args.match_threshold self.ksize = args.ksize self.model = load_model(args.ckpt, method='patch2pix') self.name = 'Patch2Pix' print(f'Initialize {self.name} with image size {self.imsize}') def match_and_draw(self, data_dict, root_dir=None, ground_truth=False, measure_time=False, viz_matches=True): img_name0, img_name1 = list(zip(*data_dict['pair_names']))[0] path_img0 = os.path.join(root_dir, img_name0) path_img1 = os.path.join(root_dir, img_name1) img0, img1 = cv2.imread(path_img0), cv2.imread(path_img1) return_m_upscale = True if str(data_dict["dataset_name"][0]).lower() == 'scannet': # self.imsize = 640 img0 = cv2.resize(img0, tuple(self.imsize)) # (640, 480)) img1 = cv2.resize(img1, tuple(self.imsize)) # (640, 480)) return_m_upscale = False outputs = estimate_matches(self.model, path_img0, path_img1, ksize=self.ksize, io_thres=self.match_threshold, eval_type='fine', imsize=self.imsize, return_upscale=return_m_upscale, measure_time=measure_time) if measure_time: self.time_stats.append(outputs[-1]) matches, mconf = outputs[0], outputs[1] kpts0 = matches[:, :2] kpts1 = matches[:, 2:4] if viz_matches: saved_name = "_".join([img_name0.split('/')[-1].split('.')[0], img_name1.split('/')[-1].split('.')[0]]) folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) if not os.path.exists(folder_matches): os.makedirs(folder_matches) path_to_save_matches = os.path.join(folder_matches, "{}.png".format(saved_name)) if ground_truth: data_dict["mkpts0_f"] = torch.from_numpy(matches[:, :2]).float().to(self.device) data_dict["mkpts1_f"] = torch.from_numpy(matches[:, 2:4]).float().to(self.device) data_dict["m_bids"] = torch.zeros(matches.shape[0], device=self.device, dtype=torch.float32) compute_symmetrical_epipolar_errors(data_dict) # compute epi_errs for each match compute_pose_errors(data_dict) # compute R_errs, t_errs, pose_errs for each pair epi_errors = data_dict['epi_errs'].cpu().numpy() R_errors, t_errors = data_dict['R_errs'][0], data_dict['t_errs'][0] self.draw_matches(kpts0, kpts1, img0, img1, epi_errors, path=path_to_save_matches, R_errs=R_errors, t_errs=t_errors) rel_pair_names = list(zip(*data_dict['pair_names'])) bs = data_dict['image0'].size(0) metrics = { # to filter duplicate pairs caused by DistributedSampler 'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)], 'epi_errs': [data_dict['epi_errs'][data_dict['m_bids'] == b].cpu().numpy() for b in range(bs)], 'R_errs': data_dict['R_errs'], 't_errs': data_dict['t_errs'], 'inliers': data_dict['inliers']} self.eval_stats.append({'metrics': metrics}) else: m_conf = 1 - mconf self.draw_matches(kpts0, kpts1, img0, img1, m_conf, path=path_to_save_matches, conf_thr=0.4)