import pytorch_lightning as pl import argparse import pprint from loguru import logger as loguru_logger from src.config.default import get_cfg_defaults from src.utils.profiler import build_profiler from src.lightning_trainer.data import MultiSceneDataModule from src.lightning_trainer.trainer import PL_Trainer def parse_args(): # init a costum parser which will be added into pl.Trainer parser # check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( 'data_cfg_path', type=str, help='data config path') parser.add_argument( 'main_cfg_path', type=str, help='main config path') parser.add_argument( '--ckpt_path', type=str, default="weights/indoor_ds.ckpt", help='path to the checkpoint') parser.add_argument( '--dump_dir', type=str, default=None, help="if set, the matching results will be dump to dump_dir") parser.add_argument( '--profiler_name', type=str, default=None, help='options: [inference, pytorch], or leave it unset') parser.add_argument( '--batch_size', type=int, default=1, help='batch_size per gpu') parser.add_argument( '--num_workers', type=int, default=2) parser.add_argument( '--thr', type=float, default=None, help='modify the coarse-level matching threshold.') parser = pl.Trainer.add_argparse_args(parser) return parser.parse_args() if __name__ == '__main__': # parse arguments args = parse_args() pprint.pprint(vars(args)) # init default-cfg and merge it with the main- and data-cfg config = get_cfg_defaults() config.merge_from_file(args.main_cfg_path) config.merge_from_file(args.data_cfg_path) pl.seed_everything(config.TRAINER.SEED) # reproducibility # tune when testing if args.thr is not None: config.MODEL.MATCH_COARSE.THR = args.thr loguru_logger.info(f"Args and config initialized!") # lightning module profiler = build_profiler(args.profiler_name) model = PL_Trainer(config, pretrained_ckpt=args.ckpt_path, profiler=profiler, dump_dir=args.dump_dir) loguru_logger.info(f"Model-lightning initialized!") # lightning data data_module = MultiSceneDataModule(args, config) loguru_logger.info(f"DataModule initialized!") # lightning trainer trainer = pl.Trainer.from_argparse_args(args, replace_sampler_ddp=False, logger=False) loguru_logger.info(f"Start testing!") trainer.test(model, datamodule=data_module, verbose=False)