from math import log from loguru import logger import torch from einops import repeat from kornia.utils import create_meshgrid from .geometry import warp_kpts ############## ↓ Coarse-Level supervision ↓ ############## @torch.no_grad() def mask_pts_at_padded_regions(grid_pt, mask): """For megadepth dataset, zero-padding exists in images""" mask = repeat(mask, 'n h w -> n (h w) c', c=2) grid_pt[~mask.bool()] = 0 return grid_pt @torch.no_grad() def spvs_coarse(data, config): """ Update: data (dict): { "conf_matrix_gt": [N, hw0, hw1], 'spv_b_ids': [M] 'spv_i_ids': [M] 'spv_j_ids': [M] 'spv_w_pt0_i': [N, hw0, 2], in original image resolution 'spv_pt1_i': [N, hw1, 2], in original image resolution } NOTE: - for scannet dataset, there're 3 kinds of resolution {i, c, f} - for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f} """ # 1. misc device = data['image0'].device N, _, H0, W0 = data['image0'].shape _, _, H1, W1 = data['image1'].shape scale = config['MODEL']['RESOLUTION'][0] scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale scale1 = scale * data['scale1'][:, None] if 'scale0' in data else scale h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1]) # 2. warp grids # create kpts in meshgrid and resize them to image resolution grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2] grid_pt0_i = scale0 * grid_pt0_c grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1) grid_pt1_i = scale1 * grid_pt1_c # mask padded region to (0, 0), so no need to manually mask conf_matrix_gt if 'mask0' in data: grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0']) grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1']) # warp kpts bi-directionally and resize them to coarse-level resolution # (no depth consistency check, since it leads to worse results experimentally) # (unhandled edge case: points with 0-depth will be warped to the left-up corner) _, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1']) _, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0']) w_pt0_c = w_pt0_i / scale1 w_pt1_c = w_pt1_i / scale0 # 3. check if mutual nearest neighbor w_pt0_c_round = w_pt0_c[:, :, :].round().long() nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1 w_pt1_c_round = w_pt1_c[:, :, :].round().long() nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0 # corner case: out of boundary def out_bound_mask(pt, w, h): return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h) nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0 nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0 loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0) correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1) correct_0to1[:, 0] = False # ignore the top-left corner # 4. construct a gt conf_matrix conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device) b_ids, i_ids = torch.where(correct_0to1 != 0) j_ids = nearest_index1[b_ids, i_ids] conf_matrix_gt[b_ids, i_ids, j_ids] = 1 data.update({'conf_matrix_gt': conf_matrix_gt}) # 5. save coarse matches(gt) for training fine level if len(b_ids) == 0: logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}") # this won't affect fine-level loss calculation b_ids = torch.tensor([0], device=device) i_ids = torch.tensor([0], device=device) j_ids = torch.tensor([0], device=device) data.update({ 'spv_b_ids': b_ids, 'spv_i_ids': i_ids, 'spv_j_ids': j_ids }) # 6. save intermediate results (for fast fine-level computation) data.update({ 'spv_w_pt0_i': w_pt0_i, 'spv_pt1_i': grid_pt1_i }) def compute_supervision_coarse(data, config): assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!" data_source = data['dataset_name'][0] if data_source.lower() in ['scannet', 'megadepth']: spvs_coarse(data, config) else: raise ValueError(f'Unknown data source: {data_source}') ############## ↓ Fine-Level supervision ↓ ############## @torch.no_grad() def spvs_fine(data, config): """ Update: data (dict):{ "expec_f_gt": [M, 2]} """ # 1. misc # w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i') w_pt0_i, pt1_i = data['spv_w_pt0_i'], data['spv_pt1_i'] scale = config['MODEL']['RESOLUTION'][1] radius = config['MODEL']['FINE_WINDOW_SIZE'] // 2 # 2. get coarse prediction b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids'] # 3. compute gt scale = scale * data['scale1'][b_ids] if 'scale0' in data else scale # `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later expec_f_gt = (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius # [M, 2] data.update({"expec_f_gt": expec_f_gt}) def compute_supervision_fine(data, config): data_source = data['dataset_name'][0] if data_source.lower() in ['scannet', 'megadepth']: spvs_fine(data, config) else: raise NotImplementedError