import math import numpy as np import cv2 def extract_ORB_keypoints_and_descriptors(img): # gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) detector = cv2.ORB_create(nfeatures=1000) kp, desc = detector.detectAndCompute(img, None) return kp, desc def match_descriptors_NG(kp1, desc1, kp2, desc2): bf = cv2.BFMatcher() try: matches = bf.knnMatch(desc1, desc2,k=2) except: matches = [] good_matches=[] image1_kp = [] image2_kp = [] ratios = [] try: for (m1,m2) in matches: if m1.distance < 0.8 * m2.distance: good_matches.append(m1) image2_kp.append(kp2[m1.trainIdx].pt) image1_kp.append(kp1[m1.queryIdx].pt) ratios.append(m1.distance / m2.distance) except: pass image1_kp = np.array([image1_kp]) image2_kp = np.array([image2_kp]) ratios = np.array([ratios]) ratios = np.expand_dims(ratios, 2) return image1_kp, image2_kp, good_matches, ratios def match_descriptors(kp1, desc1, kp2, desc2, ORB): if ORB: bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) try: matches = bf.match(desc1,desc2) matches = sorted(matches, key = lambda x:x.distance) except: matches = [] good_matches=[] image1_kp = [] image2_kp = [] count = 0 try: for m in matches: count+=1 if count < 1000: good_matches.append(m) image2_kp.append(kp2[m.trainIdx].pt) image1_kp.append(kp1[m.queryIdx].pt) except: pass else: # Match the keypoints with the warped_keypoints with nearest neighbor search bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True) try: matches = bf.match(desc1.transpose(1,0), desc2.transpose(1,0)) matches = sorted(matches, key = lambda x:x.distance) except: matches = [] good_matches=[] image1_kp = [] image2_kp = [] try: for m in matches: good_matches.append(m) image2_kp.append(kp2[m.trainIdx].pt) image1_kp.append(kp1[m.queryIdx].pt) except: pass image1_kp = np.array([image1_kp]) image2_kp = np.array([image2_kp]) return image1_kp, image2_kp, good_matches def compute_essential(matched_kp1, matched_kp2, K): pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) K_1 = np.eye(3) # Estimate the homography between the matches using RANSAC ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.FM_RANSAC, prob=0.999, threshold=0.001) if ransac_inliers is None or ransac_model.shape != (3,3): ransac_inliers = np.array([]) ransac_model = None return ransac_model, ransac_inliers, pts1, pts2 def compute_error(R_GT,t_GT,E,pts1_norm, pts2_norm, inliers): """Compute the angular error between two rotation matrices and two translation vectors. Keyword arguments: R -- 2D numpy array containing an estimated rotation gt_R -- 2D numpy array containing the corresponding ground truth rotation t -- 2D numpy array containing an estimated translation as column gt_t -- 2D numpy array containing the corresponding ground truth translation """ inliers = inliers.ravel() R = np.eye(3) t = np.zeros((3,1)) sst = True try: cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), R, t, inliers) except: sst = False # calculate angle between provided rotations # if sst: dR = np.matmul(R, np.transpose(R_GT)) dR = cv2.Rodrigues(dR)[0] dR = np.linalg.norm(dR) * 180 / math.pi # calculate angle between provided translations dT = float(np.dot(t_GT.T, t)) dT /= float(np.linalg.norm(t_GT)) if dT > 1 or dT < -1: print("Domain warning! dT:",dT) dT = max(-1,min(1,dT)) dT = math.acos(dT) * 180 / math.pi dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation else: dR,dT = 180.0, 180.0 return dR, dT