import torch from torch import nn from torchvision.models import resnet from typing import Optional, Callable class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, gate: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None): super().__init__() if gate is None: self.gate = nn.ReLU(inplace=True) else: self.gate = gate if norm_layer is None: norm_layer = nn.BatchNorm2d self.conv1 = resnet.conv3x3(in_channels, out_channels) self.bn1 = norm_layer(out_channels) self.conv2 = resnet.conv3x3(out_channels, out_channels) self.bn2 = norm_layer(out_channels) def forward(self, x): x = self.gate(self.bn1(self.conv1(x))) # B x in_channels x H x W x = self.gate(self.bn2(self.conv2(x))) # B x out_channels x H x W return x # copied from torchvision\models\resnet.py#27->BasicBlock class ResBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, gate: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(ResBlock, self).__init__() if gate is None: self.gate = nn.ReLU(inplace=True) else: self.gate = gate if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('ResBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in ResBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = resnet.conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.conv2 = resnet.conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.gate(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.gate(out) return out class ALNet(nn.Module): def __init__(self, c1: int = 32, c2: int = 64, c3: int = 128, c4: int = 128, dim: int = 128, single_head: bool = True, ): super().__init__() self.gate = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.pool4 = nn.MaxPool2d(kernel_size=4, stride=4) self.block1 = ConvBlock(3, c1, self.gate, nn.BatchNorm2d) self.block2 = ResBlock(inplanes=c1, planes=c2, stride=1, downsample=nn.Conv2d(c1, c2, 1), gate=self.gate, norm_layer=nn.BatchNorm2d) self.block3 = ResBlock(inplanes=c2, planes=c3, stride=1, downsample=nn.Conv2d(c2, c3, 1), gate=self.gate, norm_layer=nn.BatchNorm2d) self.block4 = ResBlock(inplanes=c3, planes=c4, stride=1, downsample=nn.Conv2d(c3, c4, 1), gate=self.gate, norm_layer=nn.BatchNorm2d) # ================================== feature aggregation self.conv1 = resnet.conv1x1(c1, dim // 4) self.conv2 = resnet.conv1x1(c2, dim // 4) self.conv3 = resnet.conv1x1(c3, dim // 4) self.conv4 = resnet.conv1x1(dim, dim // 4) self.upsample2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True) self.upsample8 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True) self.upsample32 = nn.Upsample(scale_factor=32, mode='bilinear', align_corners=True) # ================================== detector and descriptor head self.single_head = single_head if not self.single_head: self.convhead1 = resnet.conv1x1(dim, dim) self.convhead2 = resnet.conv1x1(dim, dim + 1) def forward(self, image): # ================================== feature encoder x1 = self.block1(image) # B x c1 x H x W x2 = self.pool2(x1) x2 = self.block2(x2) # B x c2 x H/2 x W/2 x3 = self.pool4(x2) x3 = self.block3(x3) # B x c3 x H/8 x W/8 x4 = self.pool4(x3) x4 = self.block4(x4) # B x dim x H/32 x W/32 # ================================== feature aggregation x1 = self.gate(self.conv1(x1)) # B x dim//4 x H x W x2 = self.gate(self.conv2(x2)) # B x dim//4 x H//2 x W//2 x3 = self.gate(self.conv3(x3)) # B x dim//4 x H//8 x W//8 x4 = self.gate(self.conv4(x4)) # B x dim//4 x H//32 x W//32 x2_up = self.upsample2(x2) # B x dim//4 x H x W x3_up = self.upsample8(x3) # B x dim//4 x H x W x4_up = self.upsample32(x4) # B x dim//4 x H x W x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1) # ================================== detector and descriptor head if not self.single_head: x1234 = self.gate(self.convhead1(x1234)) x = self.convhead2(x1234) # B x dim+1 x H x W descriptor_map = x[:, :-1, :, :] scores_map = torch.sigmoid(x[:, -1, :, :]).unsqueeze(1) return scores_map, descriptor_map if __name__ == '__main__': from thop import profile net = ALNet(c1=16, c2=32, c3=64, c4=128, dim=128, single_head=True) image = torch.randn(1, 3, 640, 480) flops, params = profile(net, inputs=(image,), verbose=False) print('{:<30} {:<8} GFLops'.format('Computational complexity: ', flops / 1e9)) print('{:<30} {:<8} KB'.format('Number of parameters: ', params / 1e3))