import argparse import cv2 import numpy as np import os import math import subprocess from tqdm import tqdm def compute_essential(matched_kp1, matched_kp2, K): pts1 = cv2.undistortPoints( matched_kp1, cameraMatrix=K, distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0), ) pts2 = cv2.undistortPoints( matched_kp2, cameraMatrix=K, distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0), ) K_1 = np.eye(3) # Estimate the homography between the matches using RANSAC ransac_model, ransac_inliers = cv2.findEssentialMat( pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000 ) if ransac_inliers is None or ransac_model.shape != (3, 3): ransac_inliers = np.array([]) ransac_model = None return ransac_model, ransac_inliers, pts1, pts2 def compute_error(R_GT, t_GT, E, pts1_norm, pts2_norm, inliers): """Compute the angular error between two rotation matrices and two translation vectors. Keyword arguments: R -- 2D numpy array containing an estimated rotation gt_R -- 2D numpy array containing the corresponding ground truth rotation t -- 2D numpy array containing an estimated translation as column gt_t -- 2D numpy array containing the corresponding ground truth translation """ inliers = inliers.ravel() R = np.eye(3) t = np.zeros((3, 1)) sst = True try: _, R, t, _ = cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), inliers) except: sst = False # calculate angle between provided rotations # if sst: dR = np.matmul(R, np.transpose(R_GT)) dR = cv2.Rodrigues(dR)[0] dR = np.linalg.norm(dR) * 180 / math.pi # calculate angle between provided translations dT = float(np.dot(t_GT.T, t)) dT /= float(np.linalg.norm(t_GT)) if dT > 1 or dT < -1: print("Domain warning! dT:", dT) dT = max(-1, min(1, dT)) dT = math.acos(dT) * 180 / math.pi dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation else: dR, dT = 180.0, 180.0 return dR, dT def pose_evaluation(result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT): try: m_kp1 = np.load(result_base_dir + enhancer + "/DarkFeat/POINT_1/" + dark_name1) m_kp2 = np.load(result_base_dir + enhancer + "/DarkFeat/POINT_2/" + dark_name2) except: return 180.0, 180.0 try: E, inliers, pts1, pts2 = compute_essential(m_kp1, m_kp2, K) except: E, inliers, pts1, pts2 = np.zeros((3, 3)), np.array([]), None, None dR, dT = compute_error(R_GT, t_GT, E, pts1, pts2, inliers) return dR, dT if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--histeq", action="store_true") parser.add_argument("--dataset_dir", type=str, default="/data/hyz/MID/") opt = parser.parse_args() sizer = (960, 640) focallength_x = 4.504986436499113e03 / (6744 / sizer[0]) focallength_y = 4.513311442889859e03 / (4502 / sizer[1]) K = np.eye(3) K[0, 0] = focallength_x K[1, 1] = focallength_y K[0, 2] = 3.363322177533149e03 / (6744 / sizer[0]) K[1, 2] = 2.291824660547715e03 / (4502 / sizer[1]) Kinv = np.linalg.inv(K) Kinvt = np.transpose(Kinv) PE_MT = np.zeros((6, 8)) enhancer = "None" if not opt.histeq else "HistEQ" for scene in ["Indoor", "Outdoor"]: dir_base = opt.dataset_dir + "/" + scene + "/" base_save = "result_errors/" + scene + "/" pair_list = sorted(os.listdir(dir_base)) os.makedirs(base_save, exist_ok=True) for pair in tqdm(pair_list): opention = 1 if scene == "Outdoor": pass else: if int(pair[4::]) <= 17: opention = 0 else: pass name = [] files = sorted(os.listdir(dir_base + pair)) for file_ in files: if file_.endswith(".cr2"): name.append(file_[0:9]) ISO = [ "00100", "00200", "00400", "00800", "01600", "03200", "06400", "12800", ] if opention == 1: Shutter_speed = ["0.005", "0.01", "0.025", "0.05", "0.17", "0.5"] else: Shutter_speed = ["0.01", "0.02", "0.05", "0.1", "0.3", "1"] E_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "E_estimated.npy") F_GT = np.dot(np.dot(Kinvt, E_GT), Kinv) R_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "R_GT.npy") t_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "T_GT.npy") result_base_dir = "result/" + scene + "/" + pair + "/" for iso in ISO: for ex in Shutter_speed: dark_name1 = name[0] + iso + "_" + ex + "_" + scene + ".npy" dark_name2 = name[1] + iso + "_" + ex + "_" + scene + ".npy" dr, dt = pose_evaluation( result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT ) PE_MT[Shutter_speed.index(ex), ISO.index(iso)] = max(dr, dt) subprocess.check_output( ["mkdir", "-p", base_save + pair + f"/{enhancer}/"] ) np.save( base_save + pair + f"/{enhancer}/Pose_error_DarkFeat.npy", PE_MT )