import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as tvm class ResNet18(nn.Module): def __init__(self, pretrained=False) -> None: super().__init__() self.net = tvm.resnet18(pretrained=pretrained) def forward(self, x): self = self.net x1 = x x = self.conv1(x1) x = self.bn1(x) x2 = self.relu(x) x = self.maxpool(x2) x4 = self.layer1(x) x8 = self.layer2(x4) x16 = self.layer3(x8) x32 = self.layer4(x16) return {32:x32,16:x16,8:x8,4:x4,2:x2,1:x1} def train(self, mode=True): super().train(mode) for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() pass class ResNet50(nn.Module): def __init__(self, pretrained=False, high_res = False, weights = None, dilation = None, freeze_bn = True, anti_aliased = False) -> None: super().__init__() if dilation is None: dilation = [False,False,False] if anti_aliased: pass else: if weights is not None: self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation) else: self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation) del self.net.fc self.high_res = high_res self.freeze_bn = freeze_bn def forward(self, x): net = self.net feats = {1:x} x = net.conv1(x) x = net.bn1(x) x = net.relu(x) feats[2] = x x = net.maxpool(x) x = net.layer1(x) feats[4] = x x = net.layer2(x) feats[8] = x x = net.layer3(x) feats[16] = x x = net.layer4(x) feats[32] = x return feats def train(self, mode=True): super().train(mode) if self.freeze_bn: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() pass class ResNet101(nn.Module): def __init__(self, pretrained=False, high_res = False, weights = None) -> None: super().__init__() if weights is not None: self.net = tvm.resnet101(weights = weights) else: self.net = tvm.resnet101(pretrained=pretrained) self.high_res = high_res self.scale_factor = 1 if not high_res else 1.5 def forward(self, x): net = self.net feats = {1:x} sf = self.scale_factor if self.high_res: x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic") x = net.conv1(x) x = net.bn1(x) x = net.relu(x) feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.maxpool(x) x = net.layer1(x) feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.layer2(x) feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.layer3(x) feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.layer4(x) feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") return feats def train(self, mode=True): super().train(mode) for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() pass class WideResNet50(nn.Module): def __init__(self, pretrained=False, high_res = False, weights = None) -> None: super().__init__() if weights is not None: self.net = tvm.wide_resnet50_2(weights = weights) else: self.net = tvm.wide_resnet50_2(pretrained=pretrained) self.high_res = high_res self.scale_factor = 1 if not high_res else 1.5 def forward(self, x): net = self.net feats = {1:x} sf = self.scale_factor if self.high_res: x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic") x = net.conv1(x) x = net.bn1(x) x = net.relu(x) feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.maxpool(x) x = net.layer1(x) feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.layer2(x) feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.layer3(x) feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") x = net.layer4(x) feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear") return feats def train(self, mode=True): super().train(mode) for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() pass