import torch import torch.nn.functional as F import numpy as np def fast_kde(x, std=0.1, kernel_size=9, dilation=3, padding=9 // 2, stride=1): raise NotImplementedError("WIP, use at your own risk.") # Note: when doing symmetric matching this might not be very exact, since we only check neighbours on the grid x = x.permute(0, 3, 1, 2) B, C, H, W = x.shape K = kernel_size**2 unfolded_x = F.unfold( x, kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride ).reshape(B, C, K, H, W) scores = (-(unfolded_x - x[:, :, None]).sum(dim=1) ** 2 / (2 * std**2)).exp() density = scores.sum(dim=1) return density def kde(x, std=0.1, device=None): if device is None: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if isinstance(x, np.ndarray): x = torch.from_numpy(x) # use a gaussian kernel to estimate density x = x.to(device) scores = (-torch.cdist(x, x) ** 2 / (2 * std**2)).exp() density = scores.sum(dim=-1) return density