""" 2D visualization primitives based on Matplotlib. 1) Plot images with `plot_images`. 2) Call `plot_keypoints` or `plot_matches` any number of times. 3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`. """ import matplotlib import matplotlib.pyplot as plt import matplotlib.patheffects as path_effects import numpy as np def cm_RdGn(x): """Custom colormap: red (0) -> yellow (0.5) -> green (1).""" x = np.clip(x, 0, 1)[..., None] * 2 c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]]) return np.clip(c, 0, 1) def plot_images( imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True, figsize=4.5 ): """Plot a set of images horizontally. Args: imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). titles: a list of strings, as titles for each image. cmaps: colormaps for monochrome images. adaptive: whether the figure size should fit the image aspect ratios. """ n = len(imgs) if not isinstance(cmaps, (list, tuple)): cmaps = [cmaps] * n if adaptive: ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H else: ratios = [4 / 3] * n figsize = [sum(ratios) * figsize, figsize] fig, axs = plt.subplots( 1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} ) if n == 1: axs = [axs] for i, (img, ax) in enumerate(zip(imgs, axs)): ax.imshow(img, cmap=plt.get_cmap(cmaps[i])) ax.set_axis_off() if titles: ax.set_title(titles[i]) fig.tight_layout(pad=pad) def plot_keypoints(kpts, colors="lime", ps=4): """Plot keypoints for existing images. Args: kpts: list of ndarrays of size (N, 2). colors: string, or list of list of tuples (one for each keypoints). ps: size of the keypoints as float. """ if not isinstance(colors, list): colors = [colors] * len(kpts) axes = plt.gcf().axes try: for a, k, c in zip(axes, kpts, colors): a.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0) except IndexError as e: pass def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.0): """Plot matches for a pair of existing images. Args: kpts0, kpts1: corresponding keypoints of size (N, 2). color: color of each match, string or RGB tuple. Random if not given. lw: width of the lines. ps: size of the end points (no endpoint if ps=0) indices: indices of the images to draw the matches on. a: alpha opacity of the match lines. """ fig = plt.gcf() ax = fig.axes assert len(ax) > max(indices) ax0, ax1 = ax[indices[0]], ax[indices[1]] fig.canvas.draw() assert len(kpts0) == len(kpts1) if color is None: color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist() elif len(color) > 0 and not isinstance(color[0], (tuple, list)): color = [color] * len(kpts0) if lw > 0: # transform the points into the figure coordinate system for i in range(len(kpts0)): fig.add_artist( matplotlib.patches.ConnectionPatch( xyA=(kpts0[i, 0], kpts0[i, 1]), coordsA=ax0.transData, xyB=(kpts1[i, 0], kpts1[i, 1]), coordsB=ax1.transData, zorder=1, color=color[i], linewidth=lw, alpha=a, ) ) # freeze the axes to prevent the transform to change ax0.autoscale(enable=False) ax1.autoscale(enable=False) if ps > 0: ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) def add_text( idx, text, pos=(0.01, 0.99), fs=15, color="w", lcolor="k", lwidth=2, ha="left", va="top", ): ax = plt.gcf().axes[idx] t = ax.text( *pos, text, fontsize=fs, ha=ha, va=va, color=color, transform=ax.transAxes ) if lcolor is not None: t.set_path_effects( [ path_effects.Stroke(linewidth=lwidth, foreground=lcolor), path_effects.Normal(), ] ) def save_plot(path, **kw): """Save the current figure without any white margin.""" plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw)