import torch import torch.nn as nn import kornia from types import SimpleNamespace from .utils import ImagePreprocessor class DISK(nn.Module): default_conf = { "weights": "depth", "max_num_keypoints": None, "desc_dim": 128, "nms_window_size": 5, "detection_threshold": 0.0, "pad_if_not_divisible": True, } preprocess_conf = { **ImagePreprocessor.default_conf, "resize": 1024, "grayscale": False, } required_data_keys = ["image"] def __init__(self, **conf) -> None: super().__init__() self.conf = {**self.default_conf, **conf} self.conf = SimpleNamespace(**self.conf) self.model = kornia.feature.DISK.from_pretrained(self.conf.weights) def forward(self, data: dict) -> dict: """Compute keypoints, scores, descriptors for image""" for key in self.required_data_keys: assert key in data, f"Missing key {key} in data" image = data["image"] features = self.model( image, n=self.conf.max_num_keypoints, window_size=self.conf.nms_window_size, score_threshold=self.conf.detection_threshold, pad_if_not_divisible=self.conf.pad_if_not_divisible, ) keypoints = [f.keypoints for f in features] scores = [f.detection_scores for f in features] descriptors = [f.descriptors for f in features] del features keypoints = torch.stack(keypoints, 0) scores = torch.stack(scores, 0) descriptors = torch.stack(descriptors, 0) return { "keypoints": keypoints.to(image), "keypoint_scores": scores.to(image), "descriptors": descriptors.to(image), } def extract(self, img: torch.Tensor, **conf) -> dict: """Perform extraction with online resizing""" if img.dim() == 3: img = img[None] # add batch dim assert img.dim() == 4 and img.shape[0] == 1 shape = img.shape[-2:][::-1] img, scales = ImagePreprocessor(**{**self.preprocess_conf, **conf})(img) feats = self.forward({"image": img}) feats["image_size"] = torch.tensor(shape)[None].to(img).float() feats["keypoints"] = (feats["keypoints"] + 0.5) / scales[None] - 0.5 return feats