import torch import torch.nn as nn import torch.nn.functional as F from roma.utils.utils import get_grid from .layers.block import Block from .layers.attention import MemEffAttention from .dinov2 import vit_large class TransformerDecoder(nn.Module): def __init__(self, blocks, hidden_dim, out_dim, is_classifier = False, *args, amp = False, pos_enc = True, learned_embeddings = False, embedding_dim = None, amp_dtype = torch.float16, **kwargs) -> None: super().__init__(*args, **kwargs) self.blocks = blocks self.to_out = nn.Linear(hidden_dim, out_dim) self.hidden_dim = hidden_dim self.out_dim = out_dim self._scales = [16] self.is_classifier = is_classifier self.amp = amp self.amp_dtype = amp_dtype self.pos_enc = pos_enc self.learned_embeddings = learned_embeddings if self.learned_embeddings: self.learned_pos_embeddings = nn.Parameter(nn.init.kaiming_normal_(torch.empty((1, hidden_dim, embedding_dim, embedding_dim)))) def scales(self): return self._scales.copy() def forward(self, gp_posterior, features, old_stuff, new_scale): with torch.autocast("cuda", dtype=self.amp_dtype, enabled=self.amp): B,C,H,W = gp_posterior.shape x = torch.cat((gp_posterior, features), dim = 1) B,C,H,W = x.shape grid = get_grid(B, H, W, x.device).reshape(B,H*W,2) if self.learned_embeddings: pos_enc = F.interpolate(self.learned_pos_embeddings, size = (H,W), mode = 'bilinear', align_corners = False).permute(0,2,3,1).reshape(1,H*W,C) else: pos_enc = 0 tokens = x.reshape(B,C,H*W).permute(0,2,1) + pos_enc z = self.blocks(tokens) out = self.to_out(z) out = out.permute(0,2,1).reshape(B, self.out_dim, H, W) warp, certainty = out[:, :-1], out[:, -1:] return warp, certainty, None