import os import glob import pickle import numpy as np import h5py from .base_dumper import BaseDumper import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) sys.path.insert(0, ROOT_DIR) import utils class yfcc(BaseDumper): def get_seqs(self): data_dir = os.path.join(self.config["rawdata_dir"], "yfcc100m") for seq in self.config["data_seq"]: for split in self.config["data_split"]: split_dir = os.path.join(data_dir, seq, split) dump_dir = os.path.join(self.config["feature_dump_dir"], seq, split) cur_img_seq = glob.glob(os.path.join(split_dir, "images", "*.jpg")) cur_dump_seq = [ os.path.join(dump_dir, path.split("/")[-1]) + "_" + self.config["extractor"]["name"] + "_" + str(self.config["extractor"]["num_kpt"]) + ".hdf5" for path in cur_img_seq ] self.img_seq += cur_img_seq self.dump_seq += cur_dump_seq def format_dump_folder(self): if not os.path.exists(self.config["feature_dump_dir"]): os.mkdir(self.config["feature_dump_dir"]) for seq in self.config["data_seq"]: seq_dir = os.path.join(self.config["feature_dump_dir"], seq) if not os.path.exists(seq_dir): os.mkdir(seq_dir) for split in self.config["data_split"]: split_dir = os.path.join(seq_dir, split) if not os.path.exists(split_dir): os.mkdir(split_dir) def format_dump_data(self): print("Formatting data...") pair_path = os.path.join(self.config["rawdata_dir"], "pairs") self.data = { "K1": [], "K2": [], "R": [], "T": [], "e": [], "f": [], "fea_path1": [], "fea_path2": [], "img_path1": [], "img_path2": [], } for seq in self.config["data_seq"]: pair_name = os.path.join(pair_path, seq + "-te-1000-pairs.pkl") with open(pair_name, "rb") as f: pairs = pickle.load(f) # generate id list seq_dir = os.path.join(self.config["rawdata_dir"], "yfcc100m", seq, "test") name_list = np.loadtxt(os.path.join(seq_dir, "images.txt"), dtype=str) cam_name_list = np.loadtxt( os.path.join(seq_dir, "calibration.txt"), dtype=str ) for cur_pair in pairs: index1, index2 = cur_pair[0], cur_pair[1] cam1, cam2 = h5py.File( os.path.join(seq_dir, cam_name_list[index1]), "r" ), h5py.File(os.path.join(seq_dir, cam_name_list[index2]), "r") K1, K2 = cam1["K"][()], cam2["K"][()] [w1, h1], [w2, h2] = cam1["imsize"][()][0], cam2["imsize"][()][0] cx1, cy1, cx2, cy2 = ( (w1 - 1.0) * 0.5, (h1 - 1.0) * 0.5, (w2 - 1.0) * 0.5, (h2 - 1.0) * 0.5, ) K1[0, 2], K1[1, 2], K2[0, 2], K2[1, 2] = cx1, cy1, cx2, cy2 R1, R2, t1, t2 = ( cam1["R"][()], cam2["R"][()], cam1["T"][()].reshape([3, 1]), cam2["T"][()].reshape([3, 1]), ) dR = np.dot(R2, R1.T) dt = t2 - np.dot(dR, t1) dt /= np.sqrt(np.sum(dt**2)) e_gt_unnorm = np.reshape( np.matmul( np.reshape( utils.evaluation_utils.np_skew_symmetric( dt.astype("float64").reshape(1, 3) ), (3, 3), ), np.reshape(dR.astype("float64"), (3, 3)), ), (3, 3), ) e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) f_gt_unnorm = np.linalg.inv(K2.T) @ e_gt @ np.linalg.inv(K1) f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) self.data["K1"].append(K1), self.data["K2"].append(K2) self.data["R"].append(dR), self.data["T"].append(dt) self.data["e"].append(e_gt), self.data["f"].append(f_gt) img_path1, img_path2 = os.path.join( "yfcc100m", seq, "test", name_list[index1] ), os.path.join("yfcc100m", seq, "test", name_list[index2]) dump_seq_dir = os.path.join( self.config["feature_dump_dir"], seq, "test" ) fea_path1, fea_path2 = os.path.join( dump_seq_dir, name_list[index1].split("/")[-1] + "_" + self.config["extractor"]["name"] + "_" + str(self.config["extractor"]["num_kpt"]) + ".hdf5", ), os.path.join( dump_seq_dir, name_list[index2].split("/")[-1] + "_" + self.config["extractor"]["name"] + "_" + str(self.config["extractor"]["num_kpt"]) + ".hdf5", ) self.data["img_path1"].append(img_path1), self.data["img_path2"].append( img_path2 ) self.data["fea_path1"].append(fea_path1), self.data["fea_path2"].append( fea_path2 ) self.form_standard_dataset()