import torch import torch.nn as nn import torchvision.transforms as tvf from .modules import InterestPointModule, CorrespondenceModule def warp_homography_batch(sources, homographies): """ Batch warp keypoints given homographies. From https://github.com/TRI-ML/KP2D. Parameters ---------- sources: torch.Tensor (B,H,W,C) Keypoints vector. homographies: torch.Tensor (B,3,3) Homographies. Returns ------- warped_sources: torch.Tensor (B,H,W,C) Warped keypoints vector. """ B, H, W, _ = sources.shape warped_sources = [] for b in range(B): source = sources[b].clone() source = source.view(-1, 2) """ [X, [M11, M12, M13 [x, M11*x + M12*y + M13 [M11, M12 [M13, Y, = M21, M22, M23 * y, = M21*x + M22*y + M23 = [x, y] * M21, M22 + M23, Z] M31, M32, M33] 1] M31*x + M32*y + M33 M31, M32].T M33] """ source = torch.addmm(homographies[b, :, 2], source, homographies[b, :, :2].t()) source.mul_(1 / source[:, 2].unsqueeze(1)) source = source[:, :2].contiguous().view(H, W, 2) warped_sources.append(source) return torch.stack(warped_sources, dim=0) class PointModel(nn.Module): def __init__(self, is_test=False): super(PointModel, self).__init__() self.is_test = is_test self.interestpoint_module = InterestPointModule(is_test=self.is_test) self.correspondence_module = CorrespondenceModule() self.norm_rgb = tvf.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) def forward(self, *args): img = args[0] img = self.norm_rgb(img) score, coord, desc = self.interestpoint_module(img) return score, coord, desc