import torch import torch.nn as nn import torchvision.transforms as tvf from .modules import InterestPointModule, CorrespondenceModule def warp_homography_batch(sources, homographies): """ Batch warp keypoints given homographies. From https://github.com/TRI-ML/KP2D. Parameters ---------- sources: torch.Tensor (B,H,W,C) Keypoints vector. homographies: torch.Tensor (B,3,3) Homographies. Returns ------- warped_sources: torch.Tensor (B,H,W,C) Warped keypoints vector. """ B, H, W, _ = sources.shape warped_sources = [] for b in range(B): source = sources[b].clone() source = source.view(-1, 2) """ [X, [M11, M12, M13 [x, M11*x + M12*y + M13 [M11, M12 [M13, Y, = M21, M22, M23 * y, = M21*x + M22*y + M23 = [x, y] * M21, M22 + M23, Z] M31, M32, M33] 1] M31*x + M32*y + M33 M31, M32].T M33] """ source = torch.addmm(homographies[b, :, 2], source, homographies[b, :, :2].t()) source.mul_(1 / source[:, 2].unsqueeze(1)) source = source[:, :2].contiguous().view(H, W, 2) warped_sources.append(source) return torch.stack(warped_sources, dim=0) class PointModel(nn.Module): def __init__(self, is_test=True): super(PointModel, self).__init__() self.is_test = is_test self.interestpoint_module = InterestPointModule(is_test=self.is_test) self.correspondence_module = CorrespondenceModule() self.norm_rgb = tvf.Normalize(mean=[0.5, 0.5, 0.5], std=[0.225, 0.225, 0.225]) def forward(self, *args): if self.is_test: img = args[0] img = self.norm_rgb(img) score, coord, desc = self.interestpoint_module(img) return score, coord, desc else: source_score, source_coord, source_desc_block = self.interestpoint_module( args[0] ) target_score, target_coord, target_desc_block = self.interestpoint_module( args[1] ) B, _, H, W = args[0].shape B, _, hc, wc = source_score.shape device = source_score.device # Normalize the coordinates from ([0, h], [0, w]) to ([0, 1], [0, 1]). source_coord_norm = source_coord.clone() source_coord_norm[:, 0] = ( source_coord_norm[:, 0] / (float(W - 1) / 2.0) ) - 1.0 source_coord_norm[:, 1] = ( source_coord_norm[:, 1] / (float(H - 1) / 2.0) ) - 1.0 source_coord_norm = source_coord_norm.permute(0, 2, 3, 1) target_coord_norm = target_coord.clone() target_coord_norm[:, 0] = ( target_coord_norm[:, 0] / (float(W - 1) / 2.0) ) - 1.0 target_coord_norm[:, 1] = ( target_coord_norm[:, 1] / (float(H - 1) / 2.0) ) - 1.0 target_coord_norm = target_coord_norm.permute(0, 2, 3, 1) target_coord_warped_norm = warp_homography_batch(source_coord_norm, args[2]) target_coord_warped = target_coord_warped_norm.clone() # de-normlize the coordinates target_coord_warped[:, :, :, 0] = (target_coord_warped[:, :, :, 0] + 1) * ( float(W - 1) / 2.0 ) target_coord_warped[:, :, :, 1] = (target_coord_warped[:, :, :, 1] + 1) * ( float(H - 1) / 2.0 ) target_coord_warped = target_coord_warped.permute(0, 3, 1, 2) # Border mask border_mask_ori = torch.ones(B, hc, wc) border_mask_ori[:, 0] = 0 border_mask_ori[:, hc - 1] = 0 border_mask_ori[:, :, 0] = 0 border_mask_ori[:, :, wc - 1] = 0 border_mask_ori = border_mask_ori.gt(1e-3).to(device) oob_mask2 = ( target_coord_warped_norm[:, :, :, 0].lt(1) & target_coord_warped_norm[:, :, :, 0].gt(-1) & target_coord_warped_norm[:, :, :, 1].lt(1) & target_coord_warped_norm[:, :, :, 1].gt(-1) ) border_mask = border_mask_ori & oob_mask2 # score target_score_warped = torch.nn.functional.grid_sample( target_score, target_coord_warped_norm.detach(), align_corners=False ) # descriptor source_desc2 = torch.nn.functional.grid_sample( source_desc_block[0], source_coord_norm.detach() ) source_desc3 = torch.nn.functional.grid_sample( source_desc_block[1], source_coord_norm.detach() ) source_aware = source_desc_block[2] source_desc = torch.mul( source_desc2, source_aware[:, 0, :, :].unsqueeze(1).contiguous() ) + torch.mul( source_desc3, source_aware[:, 1, :, :].unsqueeze(1).contiguous() ) target_desc2 = torch.nn.functional.grid_sample( target_desc_block[0], target_coord_norm.detach() ) target_desc3 = torch.nn.functional.grid_sample( target_desc_block[1], target_coord_norm.detach() ) target_aware = target_desc_block[2] target_desc = torch.mul( target_desc2, target_aware[:, 0, :, :].unsqueeze(1).contiguous() ) + torch.mul( target_desc3, target_aware[:, 1, :, :].unsqueeze(1).contiguous() ) target_desc2_warped = torch.nn.functional.grid_sample( target_desc_block[0], target_coord_warped_norm.detach() ) target_desc3_warped = torch.nn.functional.grid_sample( target_desc_block[1], target_coord_warped_norm.detach() ) target_aware_warped = torch.nn.functional.grid_sample( target_desc_block[2], target_coord_warped_norm.detach() ) target_desc_warped = torch.mul( target_desc2_warped, target_aware_warped[:, 0, :, :].unsqueeze(1).contiguous(), ) + torch.mul( target_desc3_warped, target_aware_warped[:, 1, :, :].unsqueeze(1).contiguous(), ) confidence_matrix = self.correspondence_module(source_desc, target_desc) confidence_matrix = torch.clamp(confidence_matrix, 1e-12, 1 - 1e-12) output = { "source_score": source_score, "source_coord": source_coord, "source_desc": source_desc, "source_aware": source_aware, "target_score": target_score, "target_coord": target_coord, "target_score_warped": target_score_warped, "target_coord_warped": target_coord_warped, "target_desc_warped": target_desc_warped, "target_aware_warped": target_aware_warped, "border_mask": border_mask, "confidence_matrix": confidence_matrix, } return output