import sys from pathlib import Path import torchvision.transforms as tvf from ..utils.base_model import BaseModel from hloc import logger base_path = Path(__file__).parent / "../../third_party" sys.path.append(str(base_path)) r2d2_path = Path(__file__).parent / "../../third_party/r2d2" from r2d2.extract import load_network, NonMaxSuppression, extract_multiscale class R2D2(BaseModel): default_conf = { "model_name": "r2d2_WASF_N16.pt", "max_keypoints": 5000, "scale_factor": 2**0.25, "min_size": 256, "max_size": 1024, "min_scale": 0, "max_scale": 1, "reliability_threshold": 0.7, "repetability_threshold": 0.7, } required_inputs = ["image"] def _init(self, conf): model_fn = r2d2_path / "models" / conf["model_name"] self.norm_rgb = tvf.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) self.net = load_network(model_fn) self.detector = NonMaxSuppression( rel_thr=conf["reliability_threshold"], rep_thr=conf["repetability_threshold"], ) logger.info(f"Load R2D2 model done.") def _forward(self, data): img = data["image"] img = self.norm_rgb(img) xys, desc, scores = extract_multiscale( self.net, img, self.detector, scale_f=self.conf["scale_factor"], min_size=self.conf["min_size"], max_size=self.conf["max_size"], min_scale=self.conf["min_scale"], max_scale=self.conf["max_scale"], ) idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] xy = xys[idxs, :2] desc = desc[idxs].t() scores = scores[idxs] pred = { "keypoints": xy[None], "descriptors": desc[None], "scores": scores[None], } return pred