import cv2 import torch import warnings import numpy as np from pathlib import Path from typing import Dict, Any, Optional, Tuple, List, Union from hloc import logger from hloc import match_dense, match_features, extract_features from hloc.utils.viz import add_text, plot_keypoints from .utils import ( load_config, get_model, get_feature_model, filter_matches, device, ROOT, ) from .viz import ( fig2im, plot_images, display_matches, ) import matplotlib.pyplot as plt warnings.simplefilter("ignore") class ImageMatchingAPI(torch.nn.Module): default_conf = { "ransac": { "enable": True, "estimator": "poselib", "geometry": "homography", "method": "RANSAC", "reproj_threshold": 3, "confidence": 0.9999, "max_iter": 10000, }, } def __init__( self, conf: dict = {}, device: str = "cpu", detect_threshold: float = 0.015, max_keypoints: int = 1024, match_threshold: float = 0.2, ) -> None: """ Initializes an instance of the ImageMatchingAPI class. Args: conf (dict): A dictionary containing the configuration parameters. device (str, optional): The device to use for computation. Defaults to "cpu". detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015. max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024. match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2. Returns: None """ super().__init__() self.device = device self.conf = {**self.default_conf, **conf} self._updata_config(detect_threshold, max_keypoints, match_threshold) self._init_models() if device == "cuda": memory_allocated = torch.cuda.memory_allocated(device) memory_reserved = torch.cuda.memory_reserved(device) logger.info( f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB" ) logger.info( f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB" ) self.pred = None def parse_match_config(self, conf): if conf["dense"]: return { **conf, "matcher": match_dense.confs.get( conf["matcher"]["model"]["name"] ), "dense": True, } else: return { **conf, "feature": extract_features.confs.get( conf["feature"]["model"]["name"] ), "matcher": match_features.confs.get( conf["matcher"]["model"]["name"] ), "dense": False, } def _updata_config( self, detect_threshold: float = 0.015, max_keypoints: int = 1024, match_threshold: float = 0.2, ): self.dense = self.conf["dense"] if self.conf["dense"]: try: self.conf["matcher"]["model"][ "match_threshold" ] = match_threshold except TypeError as e: breakpoint() else: self.conf["feature"]["model"]["max_keypoints"] = max_keypoints self.conf["feature"]["model"][ "keypoint_threshold" ] = detect_threshold self.extract_conf = self.conf["feature"] self.match_conf = self.conf["matcher"] def _init_models(self): # initialize matcher self.matcher = get_model(self.match_conf) # initialize extractor if self.dense: self.extractor = None else: self.extractor = get_feature_model(self.conf["feature"]) def _forward(self, img0, img1): if self.dense: pred = match_dense.match_images( self.matcher, img0, img1, self.match_conf["preprocessing"], device=self.device, ) last_fixed = "{}".format(self.match_conf["model"]["name"]) else: pred0 = extract_features.extract( self.extractor, img0, self.extract_conf["preprocessing"] ) pred1 = extract_features.extract( self.extractor, img1, self.extract_conf["preprocessing"] ) pred = match_features.match_images(self.matcher, pred0, pred1) return pred @torch.inference_mode() def forward( self, img0: np.ndarray, img1: np.ndarray, ) -> Dict[str, np.ndarray]: """ Forward pass of the image matching API. Args: img0: A 3D NumPy array of shape (H, W, C) representing the first image. Values are in the range [0, 1] and are in RGB mode. img1: A 3D NumPy array of shape (H, W, C) representing the second image. Values are in the range [0, 1] and are in RGB mode. Returns: A dictionary containing the following keys: - image0_orig: The original image 0. - image1_orig: The original image 1. - keypoints0_orig: The keypoints detected in image 0. - keypoints1_orig: The keypoints detected in image 1. - mkeypoints0_orig: The raw matches between image 0 and image 1. - mkeypoints1_orig: The raw matches between image 1 and image 0. - mmkeypoints0_orig: The RANSAC inliers in image 0. - mmkeypoints1_orig: The RANSAC inliers in image 1. - mconf: The confidence scores for the raw matches. - mmconf: The confidence scores for the RANSAC inliers. """ # Take as input a pair of images (not a batch) assert isinstance(img0, np.ndarray) assert isinstance(img1, np.ndarray) self.pred = self._forward(img0, img1) if self.conf["ransac"]["enable"]: self.pred = self._geometry_check(self.pred) return self.pred def _geometry_check( self, pred: Dict[str, Any], ) -> Dict[str, Any]: """ Filter matches using RANSAC. If keypoints are available, filter by keypoints. If lines are available, filter by lines. If both keypoints and lines are available, filter by keypoints. Args: pred (Dict[str, Any]): dict of matches, including original keypoints. See :func:`filter_matches` for the expected keys. Returns: Dict[str, Any]: filtered matches """ pred = filter_matches( pred, ransac_method=self.conf["ransac"]["method"], ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"], ransac_confidence=self.conf["ransac"]["confidence"], ransac_max_iter=self.conf["ransac"]["max_iter"], ) return pred def visualize( self, log_path: Optional[Path] = None, ) -> None: """ Visualize the matches. Args: log_path (Path, optional): The directory to save the images. Defaults to None. Returns: None """ if self.conf["dense"]: postfix = str(self.conf["matcher"]["model"]["name"]) else: postfix = "{}_{}".format( str(self.conf["feature"]["model"]["name"]), str(self.conf["matcher"]["model"]["name"]), ) titles = [ "Image 0 - Keypoints", "Image 1 - Keypoints", ] pred: Dict[str, Any] = self.pred image0: np.ndarray = pred["image0_orig"] image1: np.ndarray = pred["image1_orig"] output_keypoints: np.ndarray = plot_images( [image0, image1], titles=titles, dpi=300 ) if ( "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys() ): plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]]) text: str = ( f"# keypoints0: {len(pred['keypoints0_orig'])} \n" + f"# keypoints1: {len(pred['keypoints1_orig'])}" ) add_text(0, text, fs=15) output_keypoints = fig2im(output_keypoints) # plot images with raw matches titles = [ "Image 0 - Raw matched keypoints", "Image 1 - Raw matched keypoints", ] output_matches_raw, num_matches_raw = display_matches( pred, titles=titles, tag="KPTS_RAW" ) # plot images with ransac matches titles = [ "Image 0 - Ransac matched keypoints", "Image 1 - Ransac matched keypoints", ] output_matches_ransac, num_matches_ransac = display_matches( pred, titles=titles, tag="KPTS_RANSAC" ) if log_path is not None: img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png" img_matches_raw_path: Path = ( log_path / f"img_matches_raw_{postfix}.png" ) img_matches_ransac_path: Path = ( log_path / f"img_matches_ransac_{postfix}.png" ) cv2.imwrite( str(img_keypoints_path), output_keypoints[:, :, ::-1].copy(), # RGB -> BGR ) cv2.imwrite( str(img_matches_raw_path), output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR ) cv2.imwrite( str(img_matches_ransac_path), output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR ) plt.close("all") if __name__ == "__main__": import argparse config = load_config(ROOT / "common/config.yaml") test_api(config)